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DISCUSSION-BASED STRATEGIES FOR USE OF SIMULATIONS AND 
ANIMATIONS IN MIDDLE AND HIGH SCHOOL SCIENCE CLASSROOMS 

Computer simulations have immense potential for use in science classrooms to help 
promote conceptual change. As of yet, however, there is little research on how to best 
utilize these tools to support student learning. This paper describes the process of creating 
a manual for teachers on strategies that can be used during simulation-based lessons. 
Strategies included in the manual were identified during observations of middle and high-
school science lessons over the course of a three and a half year study. We discuss the 
process by which strategies were identified, compiled, and organized into a functional 
manual that teachers can use to strengthen simulation-based lessons and scaffold student 
learning. We highlight the important role of teacher feedback in shaping the final 
product. Finally, we describe eleven core strategies that can be used to promote student 
engagement and support conceptual change.  
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Computer simulations are increasing in popularity as powerful tools teachers can use to 
scaffold student understanding of complex and abstract science concepts. While there 
have been a large number of studies conducted on the use of simulations in science 
classes (Russell and Kozma, 2005; Williams, et al. 2004; Jones et al., 2001; Linn, 2003; 
Buckley 2000) very few focus on the strategies teachers can employ to use them most 
effectively (Adams et al, 2008; Price et al., 2010). Two other papers in this volume report 
on teaching strategies identified by our group during a teacher self study and the analysis 
of selected videotaped lessons which took place as part of a larger three-and-a-half-year 
study on the use of simulations in middle and high school classes.  These other studies 
are more typical research studies addressing particular research questions, but in this 
report our goal is to describe a process for making newly observed strategies available to 
teachers.  During this time, we observed eight teachers using simulations in lessons 
across nine different topics. During the 3 ½ year study, our group has amassed a large 
dataset of strategies. This paper describes the process by which these strategies were 
gathered and how they are being organized using teacher feedback to create a teacher 
manual. We will also describe eleven core strategies that can be used to scaffold 
conceptual change.  

Methodology 

Strategy Identification: 
During the first three years of this project, eight teachers were observed and often 

videotaped as they led simulation-based lessons. The classes observed ranged from 
seventh to twelfth grade and included both whole class and small group formats. During 
most lessons, there was at least one member of the research team present during the 
lesson; often there were two, with one person responsible for filming while the other took 
notes. On a few rare occasions, when there was more than one lesson occurring at a time, 
a camera was set up in the back of the room and left to run through the course of the 
lesson.   

In the field notes, we indicated sections of the lessons that seemed successful, 
sections that did not appear to work as well, interesting teacher moves, and notable 
student questions, comments and reactions. We later transferred our notes to a more 
structured lesson analysis form, where we expanded upon some of our observations. The 
form was designed to stimulate thinking about the lesson and its implementation.  Certain 
questions targeted the identification of strategies used during the lesson. These questions 
included: 

1. What were teacher’s strategies for interacting with tool?  
2. What were some strengths of the lesson and interaction (around the animation)? 
3. What candidates for teaching-principle hypotheses or pitfalls to be wary of can 

you suggest from your thinking about this lesson? 
4. What were other teacher moves you observed, not general enough to be principles 

but still interesting? 
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After each lesson or at the end of a given topic, the teachers were interviewed using the 
same analysis form. We later reviewed the information provided on the lesson analysis 
forms and combined all the strategies described into one large database.  

A second round of strategies were identified during the post-hoc analysis that 
occurred in the second, third, and fourth year of the study. All of the videos taken during 
these lessons were uploaded and transcribed and many of them were coded and analyzed 
for different studies. The research conducted with this data set covered a number of 
different topics including whole class vs. small group instructional strategies, gender 
differences, discussion strategies, and model-based learning (see Stephens et al., 2010; 
Stephens et al., 2009; Price et al., 2010; Vasu et al., 2010). As a result, a significant 
number of additional strategies were identified in this round of videotape analysis and 
added to the database to form a large list of strategies.  

Strategy Organization: 
After compiling the original set of strategies, we began the process of shaping 

them into a manual for teacher use. We organized and honed the list in multiple ways, 
exploring its potential use to teachers. This phase of the process was guided by a number 
of different goals; we wanted to 1) highlight the many affordances of a simulation, 2) 
identify strategies that strengthen simulation-based lessons and scaffold student learning, 
3) present the information in a way that is both functional for teachers and accessible to 
teachers who may not be as familiar with the medium.  

To help us meet these goals, we sought feedback from three different teachers at 
multiple points during the design of the manual. We selected teachers that worked in high 
school and middle school and represented a range of experience using simulations in the 
classroom. In the first round of feedback we asked for general information about the way 
they thought about simulations in the classroom and what they would want to see in a 
manual on strategies for using simulations. We asked: 

1. What is the main purpose you see for using a simulation in the classroom? As a 
presentation tool or a probe for student thinking? How do you use simulations? 

2. How would a teacher be apt to use a manual on strategies around simulation use? 
What organization or grouping of the strategies do you think would make sense to 
the most teachers and why? 

 

By asking these questions we were hoping to get a sense of how teachers might approach 
a manual of strategies for simulation use.  

We spent a few months designing a number of alternative models for organizing 
and presenting the strategies. When we had narrowed the potential models to three, we 
presented them to two of the teachers for feedback. They both identified the same one as 
the one they found most helpful. We selected this model and asked them to analyze it 
further, responding to the following questions: 

1. Does this organization make sense to you?  If not, what changes would you make 
to how the strategies are organized? 

2. Which strategies seem most promising?  
3. Which strategies seem least promising? Most difficult? Would any actually 
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discourage the use of simulations? 
   

We used the teacher feedback to inform a major revision of the strategy organization. 
We narrowed the list from over seventy-five strategies to eleven core strategies and an 
additional thirty strategies. The core strategies are those we perceive to be most easily 
generalized across lessons and most powerful in scaffolding student conceptual change. 
The additional strategies are more specific. We organized the additional strategies by 
function for teacher use, linking each to one or more categories in an appendix. These are 
not intended to be disjoint categories but to provide different means of access for 
teachers. A few examples include: strategies for whole class use, strategies for small 
groups, model-based strategies, strategies to scaffold middle school students, and 
strategies to scaffold high school students. Thus, one strategy might be linked to a 
number of different categories in the appendix.  

Using this core structure, we continued the process of revision for a number of 
months, submitting each successive version to teachers for feedback. At the time of this 
paper, we are using the teachers’ feedback to shape the list of strategies into a final 
organizational structure. We are also exploring different ways of presenting the strategies 
so they are easy to understand and teachers are able to apply them in their lessons. We 
plan to use screen shots, diagrams, transcripts, and narratives in the hard copy version of 
the manual and are working on an online option that will include video clips. The 
framework meets our goal of providing teachers with guidance on how to create and 
implement effective simulation-based lessons designed to scaffold student conceptual 
learning of difficult or abstract material.  

Results: Core Strategies Identified 
In the process of identifying teacher strategies around using the simulations, we 

were informed by previous research on increasing viewer comprehension of visual 
displays, engaging students in active reasoning, and promoting conceptual change in 
science classes. We were interested in identifying the way in which strategies uncovered 
in these areas of research might be adapted for use in simulation-based lessons. We also 
wanted to identify topics or lessons for which a simulation would be especially effective 
at supporting student learning. Finally, we were looking for strategies that organically 
developed around the simulation during these lessons. In this process, we identified 
eleven strategies we believe to be especially useful to supporting student learning in 
simulation-based lessons. For the purposes of this paper, we organized them into three 
categories, although some strategies can fit into more than one category. 

Category One: Strategies to help students understand important features and 
assumptions in visual displays 

Previous research suggests that it is critical that teachers highlight important 
characteristics of the simulation because, without support, students and novice viewers 
are not always able to correctly interpret what they are viewing in a simulation or relate it 
to previous knowledge (Tversky, Bauer-Morrisson, & Betrancourt, 2002; Adams et al., 
2008). To scaffold conceptual change, it is critical that students observe and accurately 
interpret relevant features of the simulation (Jones et al., 2001). This can be done through 
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a directed independent or small group activity or by scaffolding students in a whole-class 
setting.   

In his work on visual models, Mayer (1989) suggests that highlighting the most 
relevant aspects of a visual model is a powerful strategy to use with visual displays; it 
can help individuals attend to relevant information and increases the likelihood that they 
will internalize and retain the target concept. One strategy we observed teachers using 
was to run a simulation at different speeds in order to draw student attention to 
different features important to understanding the model depicted. For example, during a 
lesson sequence on diffusion, the teachers used the Atomic Microscope (Stark Design, 
2005) simulation to show particle motion to their classes. During a lesson designed to 
highlight the model element particles move randomly, one of the teachers ran the 
simulation slowly and directed his students’ attention to the motion of individual 
particles. Later in the lesson sequence, when the he wanted to highlight the model 
element particles move from areas of high concentration to areas of low concentration, 
he sped it up so they would attend to the overall trend of particle motion. This helped 
direct student attention to either micro or macro trends in the simulation.  

Teachers also used questions to effectively direct student attention to key 
elements of the simulations. In a high school physics lesson on projectile motion, the 
teachers used a series of related animations to help students understand the vertical and 
horizontal components of velocity overtime. The animations show a ball moving in an arc 
with no wind resistance along an XY axis. The animation tracks the ball's path at equal 
intervals of one second. There are three variations of the animation designed to show the 
horizontal component, vertical component, and vectors associated with projectile motion. 
In this example, the teacher presented Lines Animation II (Stephens et al., 2010) in which 
the constant spacing between lines indicates that the horizontal velocity component is 
constant (See Figure 1). As she played the animation, the teacher asked the students, 
“What's the first thing you notice about those vertical lines?” By asking the students to 
reason about the line spacing, the teacher was simultaneously drawing their attention to 
an important feature of the simulation and encouraging them to actively engage with the 
material. 

 

 

Figure 1. Lines Animation II (Stephens et al., 2010) 

Another important strategy teachers used to make the simulation more 
comprehensible to their students was to highlight the assumptions of the simulation. 
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One example of this strategy took place during the same unit on projectile motion, in a 
different class. In this lesson, the teacher used the Galileo simulation (Fowler, 1998). In 
this simulation a ball is launched into the air and its path is tracked; the simulation 
provides information on the distance it travel, the height it reaches, and the amount of 
time between being launched and when it lands. The viewer is able to manipulate 
different variables including the mass of the ball, launch angle, and launch velocity (see 
Figure 2).  

 

Figure 2. Projectile Motion (Fowler, 1998) 

 

In this segment of the lesson, the teacher asked students to predict how changes to 
the mass of the ball, while keeping all other variables constant, would change the range 
of the projectile. The students made a number of different predictions, which the teacher 
had them share, before he tested their hypotheses by launching a 5 kg and then 10 kg ball. 
The students observed, while the teacher noted aloud, that the change in mass had no 
effect on the range. After watching the teacher launch more balls with even greater 
masses, a student noted that he did not understand how the path could remain the same. 
Other students also expressed confusion and one of them rooted his disbelief in the fact 
that it would take more force to launch a heavier ball. 

The teacher acknowledged the student’s concerns and clarified a number of 
assumptions implicit in the simulation in order to help them “believe” what the 
simulation was showing them. First, he conceded that in real life it would take more 
effort to throw a heavier ball than to throw a lighter ball with the same speed. But he 
encouraged them not to dwell on the force needed, as the simulation was designed so one 
could make the assumption that it would be possible to launch a 1000kg ball with the 
exact same launch speed as a 5 kg ball. Force is not a factor in this model.  Second, he 
addressed the other variable that would affect what it would be like to throw two balls in 
real life- air resistance. He underscored the assumption that air resistance was “turned 
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off” and therefore would not affect the ball’s trajectory Thus, in this lesson, although the 
assumptions of the simulation seemed clear, the teacher had to address and clarify them 
in order to help his students comprehend the what they were observing (see Transcript 
Segment 1). 

Transcript Segment 1 

T: Here it is with the five kilograms of mass. It gives us a trace 
like that. Now, let's double it up to ten kilograms of mass. And, 
somehow it ended up the same. Let's kind of just make sure that’s 
really right and go all the way up to a hundred kilograms of mass, and 
of course, it does the same thing. How about if I went all the way up 
to a thousand kilograms of mass? Yeah, it takes a lot more-   

S: I don't really get that though. 

S2: Yeah. 

T: Yeah, you don't get it. I hear you. 

S: Yeah I don't- 

S3: It takes a lot more force to do it-   

T: Yeah, what's the difference? This one's a lot, it's harder to get 
it going; this one is really easy. But if I were to get them going 
with an equal amount of push, somehow- excuse me, an equal speed 
leaving my hand- it's not an equal push, I've got to push this one a 
lot harder because of all that extra inertia. I've got to push it 
harder to get it up to that speed...(picks up a heavy and light ball 
to demonstrate with)...And I'll try to ensure that they're the same 
speed by keeping them stuck together, and just...(throws the balls). 
They basically follow the same path. They're very different masses. 
Now, would that work if I went outside with these two balls and threw 
them as hard as I-and threw them at equal speeds, but much bigger than 
what I just did? 

S: Let's do it- let's throw them out the window. 

S2: There is air resistance so...   

T: Yeah, because this thing [indicating the lighter ball] is basically 
like a balloon, right, and it's windy out there... A real ball like 
this would be very affected by the weight. If we assume that air 
resistance really is negligible, then we should get the result that 
mass does not matter, that's what we saw up here.  

 In some lessons, the teachers also found it important to clarify the limitations of 
the simulation they were using. In the unit on diffusion, for example, three teachers used 
the Atomic Microscope to represent a semi- permeable membrane. They placed a number 
of molecules of varying sizes on the screen and erected a wall down the middle. The wall 
had a hole in it that was large enough to allow some of the molecules through but not 
others. Unfortunately, the simulation only allowed the user to leave one gap in the wall, 
rather than the multiple gaps that would more accurately represent a semi-permeable 
membrane (see Figure 3). In some classes the teacher addressed this limitation directly, 
while in other classes the teacher asked students a question to help them identify it. In 
one class the teacher acknowledged the limitation and then expanded on the idea that 
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most models are approximations by saying, “[the simulation] is a model and models 
aren’t perfect. Its a simplification of reality.”  

 

 

 

 

 

 

 

 

 

Figure 3. Atomic Microscope (Stark Design, 2005) 

Category Two: Strategies to engage students in active reasoning about a visual display  

During this project, we observed teachers using a number of creative strategies to 
engage students in active reasoning during simulation-based lessons. These strategies are 
particularly important given the fear some educators have about students slipping into 
“couch potato mode” as passive observers of the simulations. Many of the teachers used 
questions to promote active reasoning, a strategy research suggests can be an effective 
way to elicit student participation and encourage students to engage in complex reasoning 
and abstract thinking in class (Chinn, 2006, Van Zee and Minstrel, 1997, Williams and 
Clement, 2007).  

We observed a number of teachers asking students prediction questions during 
lessons with simulations. Prediction questions can be used for a number of different 
purposes. In some classes, teachers introduced the simulations frozen and asked for 
predictions on what the class thought would happen when they pressed play. Asking a 
prediction question at the beginning of a lesson can serve as a formative assessment. It 
can also prime the student to create a mental model of what they expect to occur. Other 
teachers periodically froze the simulations, changed one or more variables, and asked the 
students to predict what would happen when they ran it again. Using prediction questions 
in this way can encourage visualization and model based reasoning. By showing students 
a frozen image of a dynamic model and asking what will happen next, they are 
encouraged to “run” the model in their mind in order to make a prediction. This strategy 
is advocated by a number of authors who have advocated model based reasoning as a 
central strategy for accomplishing conceptual change (Narayanan & Hegarty, 2002; 
Hegarty, Kriz, & Cate, 2003; Clement, 2008).  
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In many classes, teachers also called on multiple students to share and defend 
their predictions to the class. Asking students to share and explain their predictions is 
another important strategy. By doing this, teachers are encouraging them to attend to 
“differences of opinion,” a tactic that Hogan and Pressley (1997) suggest can effectively 
stimulate student thought.  

Finally, prediction questions can be used towards the end of a lesson to assess 
conceptual understanding by asking students to apply their model to a novel situation. 
In an interesting variation of this strategy, one middle school teacher asked students to 
apply their model of molecular motion to a new situation. He asked them to draw a phase 
diagram of what the air would look like on a molecular level at three different points in 
time; right after opening a bottle of ammonia, a few minutes later and after one hour had 
passed (see Figure 4). In this move, the teacher is pairing asking prediction questions 
with an additional strategy of eliciting drawings and gestures around the simulation. 
In doing this, the teacher is both encouraging students to engage in model based thinking 
while also “stimulating multi-modal thinking,” by asking questions that demand verbal, 
written and drawn answers. The latter is a strategy Chin (2006) suggests helps students 
understand concepts from multiple perspectives.  

 

Figure 4. Phase Diagram 

Another type of question teachers used to encourage active reasoning is known as 
a reflective toss (Van Zee and Minstrell, 1997). The reflective toss place responsibility 
for interpreting the simulation and reasoning about the concepts it was designed to 
illustrate on the students. When a teacher engages in a reflective toss, he or she repeats a 
question made by a student back to the student or the class (Chinn, 2006). One example 
of this strategy occurred in a high school physics lesson on projectile motion. A student 
asked:  (Does it have) equal acceleration? To which the teacher responded: Does it have 
equal acceleration? What do you think? This forced the student to think about the answer 
rather than just relying on the teacher’s response. This is an important strategy because it 
gives students the responsibility for reasoning more fully about the material (Engle and 
Contant, 2002)  

Other strategies that fell into this category encouraged students to engage 
kinesthetically with the simulations.  Research suggests that the opportunity to engage 
with concepts kinesthetically can be important to scientific thinking (Clement, 1994; 
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Clement, Zietsman, & Monaghan, 2005; Reiner and Gilbert, 2000; Gooding, 1992).  We 
observed teachers using kinesthetic imagery as a strategy to promote active engagement 
and increase conceptual understanding. One example of this strategy occurred during a 
high school class physics lesson on energy. The teacher was using a simulation developed 
by PhET (Reid, et al. 2009) called Energy Skate Park, which depicts a character on a 
skateboard and shows changes to his kinetic and potential energy as he moves from the 
top to the bottom of a skate park ramp. To help her students engage with the concepts of 
energy and work, she encouraged them to imagine themselves in the scenario. At one 
point, she said “If you were at that point on the skateboard track, you’d be pumping with 
your knees.” By placing them in the scenario, not only did she engage them 
kinesthetically but may also have increased their interest in the lesson as previous 
research suggests that relating a simulation to real-world problems can increase student 
motivation (Adams et al., 2008). 

 

Category Three: Strategies to increase conceptual understanding 

During this project, we identified places in the curriculum for which simulations 
were uniquely helpful in scaffolding conceptual change. In the two examples described 
below, the teachers took advantage of the unique affordances of a simulation to show 
things that would otherwise be unobservable. Both took place as part of middle school 
lessons designed to support student understanding of molecular motion. 

Previous research suggests that middle school students experience difficulty 
understanding kinetic molecular theory (Brooks, Briggs and Driver, 1984; Gabel, Samuel 
& Hunn, 1987; Hibbard & Novak, 1975; Westbrook and Marek, 1991).  In developing 
their Matter and Molecules curriculum, Lee et al. (1993) found that student 
misconceptions were multitudinous and pervasive, with students clinging to their 
scientifically inaccurate conceptions even after exposure to different curricula. 
Specifically, they found that the middle school students they studied had difficulty 
separating the microscopic attributes of molecules from the macroscopic properties of the 
substances they made up. Thus, the students perceived molecules of ice to be “frozen” 
and molecules of wood to be “hard.” Students also experienced difficulty with the idea 
that molecules were constantly in motion and that changes we observe on a macroscopic 
level result from changes in the arrangement and/or motion of molecules. These 
misconceptions were deeply ingrained and the authors found that some students had 
retained inaccurate conceptions even while demonstrating a grasp of the vocabulary 
associated with canonical molecular theory. The authors point to these findings as 
evidence for the need to implement strategies designed to promote conceptual change 
rather than just teach rote facts and vocabulary (Lee et al., 1993). 

Model-based teaching is one approach that can be used to promote conceptual 
understanding and support student reasoning (Narayanan & Hegarty, 2002; Hegarty, 
Kriz, & Cate, 2003; Nunez-Oviedo, 2005; Williams & Clement, 2007 & Ramirez et al. 
2008). In her research on scientific reasoning among students, Mary Hegarty argues that 
once an individual has constructed a dynamic mental model, they can manipulate it to 
reason about different cases (Narayanan and Hegarty, 2002; Hegarty, Kriz, & Cate, 
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2003). Research that expert scientists use model construction and mental simulation when 
reasoning through novel cases underscores the importance of teaching these skills 
(Clement, 2008, Trickett & Trafton, 2002). 

There are a number of studies that identify teacher moves that can be used during 
model-based instruction. Clement (2008) describes one approach called co-construction. 
During model based co-constructed lessons, students and the teacher share responsibility 
for producing and analyzing ideas as they work together to build a consensus model of 
the target concept of interest. In both of the lessons described in this section, the teachers 
engaged in model based lessons that were at least partially co-constructed.  

Allowing students to conduct experiments and observe the outcomes is one 
strategy that supports model based co-construction, as it provides students with the 
opportunity to test different hypotheses and modify their mental models based on the 
results (Williams and Clement, 2007). As molecules exist on a microscopic level and are 
therefore unobservable, simulations can provide a unique platform for students to observe 
them as they construct a model of molecular motion. In the two strategies described 
below, teachers creatively utilize this opportunity to show students a microscopic 
phenomenon to promote model construction and scaffold conceptual change.  

The first strategy, which we have labeled the overlay strategy, took place as part 
of a unit on diffusion. On Day 1 of this lesson sequence, the teacher brought out a beaker 
of perfume. He then asked the students to close their eyes. He placed the perfume on a 
burner and heated it up and had them indicate when they began to smell the perfume. The 
strategy described here took place on Day 2. At the start of the lesson, he had the class 
review what had occurred the day before and asked the students what they thought “made 
the perfume spread.” The students came up with a number of different hypotheses; they 
proposed that the perfume was spread by the air current created by the air conditioner, the 
perfume spread because it was in the smoke and traveled when the smoke traveled, the 
perfume spread because it was moving away from the heat, and/or the perfume spread 
because air particles bounced into perfume particles. Thus, the students had many 
misconceptions and partially correct conceptions about how the perfume “spread.” 

 
To provide students with the opportunity to observe molecular motion, the teacher 

introduced the Atomic Microscope simulation He drew a box on the whiteboard and 
projected a simulation of colliding oxygen and nitrogen molecules, onto it. He told the 
students that the box represented the classroom and asked them to describe what they 
saw. During this discussion, he made sure to highlight student observations that the 
molecules were constantly in motion and that they moved randomly, key model elements 
to building a deeper conceptual understanding of molecular motion.  

 
The teacher then paused the simulation and added a stack of red molecules, all 

bunched together in one corner to represent the perfume in the beaker. To map what was 
occurring on the microscopic level to what had happened at the macroscopic level, he 
told the students that he was going to draw their noses on the whiteboard to represent 
where they were around the classroom when he had started to heat up the perfume. He 
drew the noses of the students that were sitting closest to the front of the room nearest to 
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the bunch of red molecules and the ones that had been in the back of the room, farthest 
away. He then ran the simulation and the students were able to watch what had happened 
on a molecular level when the perfume had spread around the room.  Thus the more 
general simulation was overlaid on top of a more specific context drawn by the teacher.  

 
Using the simulation, the teacher provided students with the opportunity to 

observe what was happening on a microscopic level and build their mental model of 
molecular motion. By adding the overlay, he was also able to tie what they were viewing 
to the macroscopic phenomenon they had already observed. In this way, the overlay 
strategy scaffolds conceptual change around molecular motion more generally and 
addresses the difficulty students often have bridging macroscopic phenomena to their 
microscopic explanations. The teachers liked this strategy and used it again in subsequent 
years. We have included a screenshot from a lesson conducted the following year on how 
the scent of baking cookies spread in order to illustrate how this strategy might be used 
(see Figure 5). 

 
 
 
 

 
 
Figure 5. A screen shot of the overlay strategy being used in a very similar class 

on molecular motion the following year. In this lesson, the overlay represented the scent 
of a baking cookie spreading through the room (rather than perfume) 
 
 The lesson described above took place at the beginning if a lesson sequence 
designed to support middle school students in the  construction of an increasingly 
sophisticated model of diffusion.  The second strategy took place later in the sequence 
when a different teacher introduced the model element of a semi-permeable membrane. 
To illustrate this concept, the students had just finished an experiment in which they had 
submerged an egg into vinegar and then into corn syrup and gathered data on how much 
the weight changed each time. They discussed that the change in weight was caused by 
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diffusion, molecules passing in and out of the egg. To help them understand the concept 
of permeability, the teacher again projected the Atomic Microscope (Stark Design) 
simulation onto the whiteboard. He divided the simulation into two parts with a barrier 
(as shown in Figure 5) running down the middle of the display. The teacher first 
presented the simulation with the barrier completely closed so that it formed a solid wall 
down the center of the display. He overlaid an outline of the egg over one side of the 
simulation so that one half represented the egg and the other represented the vinegar; the 
barrier represented the egg’s skin. He then introduced “egg particles” to one side of the 
barrier and “vinegar particles” to the other (as distinguished by their color). The barrier 
served as an impermeable membrane and the particles each stayed on their own side. To 
introduce the idea of a semi-permeable membrane, the teacher asked students to explain 
what was wrong with the model he presented model (see Transcript Segment 2).. 

 In this case, the teacher shows students what an impermeable membrane would 
look like as a dissonance-producing move. Here, the term dissonance is used according to 
the definition described by Clement and Rea-Ramirez (1998); “an internal sense of 
disparity between an existing conception and some other entity.” By showing students 
an inaccurate model  the teacher was able to give them the opportunity to modify it so 
that it was correct. In this class the students were able to help generate the idea that there 
needed to be holes in the membrane for it to be a more accurate. Presumably, in 
modifying the simulated model, the students also modified their own internal model of a 
permeable membrane. This strategy of creating an extreme case takes advantage of the 
unique affordance that simulations offer to show things that we would normally be 
unable to observe. 

Transcript Segment 2: 
 
T: Here’s the egg here’s the vinegar. Does everyone see that 
that’s the modeling going on here? 
. . . 
T: There’s the membrane right here. So if the membrane were like 
this, what would happen to our egg? Who can tell me? If the 
membrane of the egg were like this who can tell me, what would 
happen in the egg? 
S1: I think the vinegar would just bounce off of it. 
T: Nice. If the vinegar bounced off what would have happened to 
the egg?  
S2:It would have stayed the same. 
T: It would have stayed the same. So lets see if this happens. 
Lets run this. 
S3: That’s not cool-its supposed to break through. 
T: Yeah, now it’s supposed to break through but in this model we 
are showing the membrane, it cannot be broken through. 
. . . 
T:. Now if I poked a million holes in this then it would be like 
a strainer and that would be permeable right. What I'd like you 
to draw here, we know that the egg is- Is the egg membrane 
permeable or impermeable? 
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S4: permeable 
T: It’s got to be permeable because we saw the egg get bigger. So 
here I want you to draw a picture of what the egg membrane must 
look like…I want you to draw me a picture of the cell or the egg 
if it were permeable. What would that look like? 
 

Conclusion 

Over the course of this three-year project, we observed teachers demonstrating a 
number of different strategies during simulation-based lessons. Some of these strategies 
already have support in previous research on effective teaching strategies but we were 
able to observe how they were adapted in the special context of working from a visual 
display. Others seemed to emerge organically from the unique demands of these lessons. 
Out of the forty strategies we identified, we have selected eleven that appeared to 
observers to be especially effective in simulation-based lessons. All eleven of these core 
strategies can be used in simulation-based lessons to promote student engagement and 
support conceptual change.  

Category One: Strategies to help students understand important features and 
assumptions in visual displays 

1. Highlight the most relevant aspects of the visual model presented within the 
simulation (as by running the simulation at different speeds to draw attention to 
different relationships within the simulation) 

2. Use questions to direct student attention to key elements of the simulation 

3. Highlight the assumptions of the simulation  

4. Clarify the limitations of the simulation 

Category Two: Strategies to engage students in active reasoning  

5. Ask students prediction questions 

6. Have the students apply the model to a new situation when the simulation is not 
on 

7. Elicit drawings and gestures around the simulation 

8. Use reflective toss to place ownership of the material on the students 

9. Provide students with the opportunity to engage kinesthetically with the 
simulations 

Category Three: Strategies to increase conceptual understanding 

10. Project an abstract simulation onto a whiteboard and overlay it onto a drawing of 
the object it is designed to represent.  
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11. Use the simulation to create extreme or ideal scenarios that would otherwise be 
unobservable. 

 
 
How to organize a manual of strategies for teachers is an interesting problem.  Our 
current plan is to include all forty strategies in a manual, but to introduce the manual with 
the eleven strategies above as a more manageable introductory set.   
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