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A core component of informal statistical inference is the recognition that judgments based on sample
data are inherently uncertain. This implies that instruction aimed at developing informal inference
needs to foster basic probabilistic reasoning. In this article, we analyze and critique the now-common
practice of introducing students to both “theoretical” and “experimental” probability, typically with
the hope that students will come to see the latter as converging on the former as the number of obser-
vations grows. On the surface of it, this approach would seem to fit well with objectives in teaching
informal inference. However, our in-depth analysis of one eighth-grader’s reasoning about exper-
imental and theoretical probabilities points to various pitfalls in this approach. We offer tentative
recommendations about how some of these issues might be addressed.

Erin1 had been sitting with her hand raised at the back of the room for about a minute when we
called on her. We had been discussing the various possibilities involved in drawing twice with

1Erin is a pseudonym.
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CONCEPTUAL CHALLENGES IN PROBABILITY 69

replacement from a bag that contained two plastic chips marked in different ways, and had been
exploring what we meant by the claim that one of the events had a probability of 1/2.

Erin: Ok. Well, you know how you see it as half? Well, it doesn’t really have to be half, because
one’s theoretical probability and the other one is experimental probability. And you’re just
looking at it from a theoretical probability. So it won’t exactly be half, because if we actually
try it and then do the data, and actually figure out the percents that way, it will come out to
two different things. So before you could really assume that it’s half, you need to do the data
and see if it will actually come out half.

We were, of course, elated to hear this level of analysis from an eighth-grader. And as too often
happens when a student says something intelligent in one of our classes, this was not something
she had learned from us. This was the tenth day of an after-school program on probability and
data, and we had not yet introduced this distinction.

I2: Where did you hear the names theoretical and empirical [experimental]?
Erin: Math class.

I: Math class? So you’ve had this discussion about this topic in math class?
Erin: No. Just what they meant. We didn’t really go deep into it. We just, like, discussed it like

that [snapping fingers to indicate a brief period of time].

Over the next few class sessions, Erin made similar statements that led us to believe that she
had a fairly good sense of the relationship between probabilities computed from theory and those
estimated from conducting actual trials. In addition, she seemed to be a committed empiricist in
that she expressed reservations about theoretical probabilities, preferring information obtained
from data. To allow us to further probe her thinking, she agreed to stay an hour longer one day,
and for that occasion, we put together a series of problems and interviewed her as she answered
them. Her responses to that interview comprise the focus of this article. At many points she
surprised us, and our analysis of her interview has caused us to rethink some of our ideas about
how we should introduce young students to probability.

One of those ideas relates to a practice, now common in the United States and other countries,
whereby young students are introduced to both classical and frequentist interpretations of prob-
ability. In curricular materials, these two interpretations are typically referred to as “theoretical”
and “experimental” probability, respectively, and these are the terms that Erin had learned in her
mathematics class the previous year.

THEORETICAL AND EXPERIMENTAL PROBABILITIES IN THE CURRICULUM

In their review of the research on probability, Jones, Langrall, and Mooney (2007, p. 928)
remarked that

Given the importance of experimental (empirical) probability in national curriculum programs . . .
it is surprising that so little research has been undertaken on students’ conceptions of experimental
probability, and “the bi-directional relationship between empirical and theoretical probability and the
role of sample size in that relationship” (Stohl & Tarr, 2002, p. 324).3

2In the excerpts that follow, I indicates the Instructor/Interviewer.
3In Jones et al. (2007), this page number was mistakenly given as 314.
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70 KONOLD ET AL.

There are now a few studies that do explore the question of this “bi-directional” relationship.
Several of them are reviewed in the recent article by Ireland and Watson (2009). Consistent
with prior studies, which typically have employed an instructional intervention, these researchers
reported that most of their students, aged 10–12, “were able to articulate, at some stage during the
research, a basic level of understanding of the relationship between experimental and theoretical
probability, mentioning a leveling out of results or ‘proving’ of one another” (p. 358).

The Law of Large Numbers proved the most difficult construct for Ireland and Watson’s
(2009) students to grasp. The researchers attributed this to be due in part to “the lack of under-
standing of the implications of the underpinning theoretical concept of fairness” whereby many
students continued to believe that fairness implied obtaining the expected distribution of results
in the “short-term” (p. 359). This is a notion that Tversky and Kahneman (1971) observed even
among statistically educated adults and dubbed the “belief in the law of small numbers” (p. 109).

Our interview with Erin, which we undertook to explore her understanding of the relationship
between experimental and theoretical probabilities, in fact led us to question what we would even
mean by these two conceptions of probability being related. Historically, the various schools of
thought on probability (e.g., classical, frequentist, subjectivist) developed as reactions to one
another, each attempting to put probability on a more sound foundation by addressing perceived
flaws in the way previous theorists had defined probability (Mackie, 1973). It would no doubt
perplex von Mises (1957), who developed the frequentist theory of probability, that we are now
teaching both classical and frequentist-based ideas to students in a way that suggests that these
two approaches to probability fit together hand-in-glove, because he saw himself as driving the
nail in the coffin of classical theory. For him, probability is solely about repeatable phenomena,
and in those contexts it is the limiting ratio of number of successes to number of trials as the
number of trials goes to infinity. The question of whether the simple outcomes of a particular
chance experiment are equally likely is “as irrelevant for our theory as is the moral integrity of a
patient when a physician is diagnosing his illness” (p. 13).

While it was not the first to offer activities that introduced students to probability by
drawing on both classical and frequentist interpretations, the Exploring Probability unit of
the Quantitative Literacy Series was perhaps the most influential in promoting this approach
(Newman, Obremski, & Scheaffer, 1987). These authors referred to the former as “theoretical
probability” and the latter as “estimated probability.” The ideas and activities included in that unit
are clearly discernible in many of the curriculum materials that followed (e.g., Singer, Konold, &
Rubin, 1996 ; Bright, Frierson, Tarr, & Thomas, 2003; Lappan, Fey, Fitzgerald, Friel, & Phillips,
1998). At some point, these frequency-based estimates of probability began being referred to
as “experimental” or “empirical” probabilities and defined in a way that obscured the fact that
observed ratios were estimates of the probabilities, rather than probabilities themselves.4

There are several plausible pedagogical reasons for taking this two-pronged approach to intro-
ducing probability. Chief among them is the goal that students come to expect that the relative
frequency of actual trials of some chance phenomenon will converge to the theoretical probability
as the number of trials grows large. To facilitate this goal, activities often have students compute
theoretical probabilities of situations like dice rolling and coin flipping and then compare these

4For one of many examples, see Billstein and Williamson’s (1998) Book 2 of Middle grades MATH Thematics,
pp. 28 and 33.
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CONCEPTUAL CHALLENGES IN PROBABILITY 71

probabilities to the relative frequencies they observe when they actually conduct (or simulate)
trials.

Ideally, such activities also communicate the dangers of drawing conclusions from small sam-
ples, whose results will often deviate wildly from the expected outcomes. However, we are about
to ignore that principle in this article and draw conclusions about teaching probability based on
our interview with Erin—an N of 1. We therefore need to admit from the start that we are not
under the illusion that if we repeated this interview with other students we would replicate what
we report here.

BACKGROUND ON ERIN

Erin was in many ways a standout—precocious, deeply curious, playful, and quite conscious,
even sometimes boastful, of her intellectual prowess. On the 2006 Massachusetts Comprehensive
Assessment System (MCAS), Erin’s scores on the English and Mathematics components put her
about midway between the “proficient” and “advanced” levels as specified by the state. Within
her school (which is a low performer within the state) she scored at the 76th percentile in English
and 94th percentile in Math. During our after-school program, she preferred to sit in the rear
of the room apart from the rest of the students and was more interested in engaging us than in
engaging her peers. Thus Erin in many ways is not a “representative” case.

In the end, however, this single interview was compelling enough to raise serious questions
for us about how we introduce students to probability. What made it so was the fact that we came
to see Erin’s particular understanding of probability as a logical consequence of the way she had
been introduced to probability. In our view, she had attended carefully to the definitions of exper-
imental and theoretical probability that she had been offered. She attempted to integrate these
ideas with other beliefs she held to make better sense of probability. Thus, her understandings
came to represent to us how students might and should reason if they attended carefully to what
much of the current curriculum attempts to teach them about probability. The fact that we know
that many students will not pay such close attention to what instruction offers them is not some-
thing, pedagogically, on which we should be counting. It is this view of Erin as an ideal learner
rather than a representative one that, for us, makes this single interview a worthwhile source of
reflection.

There are two main characteristics of Erin’s formal introduction to theoretical and experimen-
tal probabilities that we conclude posed conceptual difficulties for her. The first is the definition
she learned for experimental probabilities. The sixth grade unit in the Connected Mathematics
Project (CMP) materials adopted at her school defines experimental probability as the ratio of
the number of favorable trials to the total number of trials.5 Defined in this way, experimen-
tal probability is bound to change with each sample. As we indicated, many materials we have
looked at in the United States now define experimental probability in this same way, omitting the
critical piece of information that this ratio is an estimate of something—of the actual, but ulti-
mately unknowable, probability of the outcome of interest. Hereafter, we will refer to this latter
probability as the “true probability.”

5See p. 1b of the Teacher’s Guide of the grade 6 unit “How Likely Is It?” (Lappan, Fey, Fitzgerald, Friel, & Phillips,
1998).
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72 KONOLD ET AL.

The second characteristic of Erin’s introduction to probability is found in many of the pub-
lished activities we have examined where the materials seem to make a tacit assumption that
the theoretical probability (i.e., the probability one can compute assuming an idealized model—
usually that certain elementary events are equally likely) is the true probability, and thus the value
on which the experimental probability will converge. But, as we will see, Erin does not make
this assumption, and we think it reasonable that she does not. As a result, there is no anchor
for the experimental results she observes—nothing for the observed experimental probability to
converge on. While there are other aspects of Erin’s reasoning that pose challenges for her devel-
opment of a richer view of probability, these two shortcomings in her formal instruction—an
incoherent definition of experimental probability and no explicit development of the idea of an
underlying but unknowable true probability—appear to serve as substantial roadblocks to her
progress.

As mentioned, Erin was participating in an after-school club in which Konold and Kazak
served as instructors. The club met for an hour once a week during the 2006–2007 school year
at a middle school in Massachusetts, USA. Twelve students in grades 6–8 participated, although
attendance from week to week was quite variable. The general focus of the after-school club was
data analysis and probability. We were testing activities we created that made use of a new version
of TinkerPlots we were developing. This new version (version 2), adds the ability to design and
run probability simulations to the data-analysis capabilities of TinkerPlots 1.0 (Konold & Miller,
2005).

At the point of the interview we report next, Erin had participated in 13 club sessions, 8 of
which had focused on probability. For the most part, these sessions had involved students in learn-
ing to build computer simulation models of chance situations and examining data from them.
In Konold and Kazak (2008), we described the instructional approach that eventually evolved
as a result of this and subsequent field tests. The primary emphasis in the “chance” activities
was exploring features of chance distributions rather than computing probabilities of particular
events. The session described in the introduction of this article, which occurred on the tenth meet-
ing of the club, was the first time we had asked students to compute and interpret a probability.
We had not intended during this session to introduce students to the terms “experimental” and
“theoretical”; as we indicated, these terms were introduced into the discussion by Erin.

THE INTERVIEW

For much of the interview, Erin used the beta version of TinkerPlots 2.0. By the time of the
interview, Erin had experienced several hours of use of this software. This included building and
running simulations and analyzing the results. We developed four problems for the hour-long
interview. We will describe her responses to the first three of these in the next section.6 The
interview was semi-structured so that while many of our follow-up questions were planned, we
also asked spontaneous questions to further probe her responses.

6We do not discuss Erin’s responses to the fourth and last task because our analysis of it suggested that she was
confused about the graph we had given her to reason from, one that attempted to show the percentage of 2s from a die
model settling down as the number of trials grew.
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CONCEPTUAL CHALLENGES IN PROBABILITY 73

Spinner Problem

In this problem, we asked Erin to determine the probability of getting green from the spinner
shown in Figure 1. The spinner was divided such that 30% was green and 70% red. However,
details of the spinner were hidden when we first showed it to her; we told her only that it was part
green and part red. She had previous experience with devices of this type in TinkerPlots, where
the task was to infer the contents of a masked sampling device by “running it” and analyzing
the resulting data. But in these prior cases, she was trying to guess the shape and approximate
centers of hidden frequency distributions. This was the first time that we had asked her to infer
an unknown probability from such a masked device. On this occasion, we first asked if she had
an initial idea of how the spinner might be divided. Then we had her conduct trials by running
the spinner with an interest in seeing what inferences she would draw from the graphs of the
outcomes of these trials (see graph in Figure 1). Finally, we revealed the contents of the spinner
and then had her draw more samples. Throughout these stages, we asked her what she thought
the probability of green was and probed her about how she was arriving at her conclusion.

FIGURE 1 The contents of the spinner at the upper left were originally
obscured. Erin could draw samples of any size by changing the Repeat
number and hitting Run. The graph in the lower right was set up to show
the number (and percentage) of the two outcomes.
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74 KONOLD ET AL.

This problem required Erin to explore a situation experimentally before she saw the structure
of the outcomes from which she could derive the theoretical probability. Our expectation based on
what she had said in prior class discussions was that while she would use data to make guesses
about the probability of green, once we revealed the hidden spinner she would then say that
the probability of green was 30%. That is, we thought her distrust of theoretical probabilities
was based on her questioning whether physical objects such as dice were truly symmetrical or
whether we could conduct trials on them using truly random methods. This presupposes, of
course, that it is not unreasonable to assume in this instance that the theoretical probability (the
percent of the spinner that is green) and the true probability are the same. Although there is no
principled reason to believe in this instance that the true probability of getting a green is actually
30%, our experience is that students generally accept it as such from a computer more readily
than from a physical device. Erin had expressed her distrust during classroom discussions that
real coin flipping and dice rolling were perfectly “fair,” but did not offer any such objections
about the computer simulation. Indeed, later in the interview while introducing the Die Problem,
we posed this question directly to her.

I: So then which would be fairer to use? This die model [built in TinkerPlots], or a real die,
if you wanted to be fair?

Erin: That model [pointing to computer spinner model].
I: Because?

Erin: How will you. . . . People won’t cheat and actually say, you know, “I’m going to try to get
more 2s, or more 5s.”

I: Alright. Suppose we didn’t allow people to do the kind of cheating you talked about. We
put it in a cup and we made them shake it real well and then roll it. Then would this
data . . .

Erin: No, because also it’s depending on, like say if you. . . . Like, a number will be more likely.
Say if this [her open palm] was a cup and you put it right there. It’s also depending on the
number it starts at on top.

I: Ok.
Erin: I think [tone suggesting some uncertainty].

I: So you’d trust this [points at computer model] to be fairer, more than you would a real
die, no matter how you rolled the real die?

Erin: Mm huh.

For the Spinner Problem, we initially asked Erin: “What do you think is the probability of
green?” Her initial answers focused primarily on why we were unlikely to have divided the
spinner in half (“that would be too obvious”). However, she also explained that no matter what
the actual percentage of green was on the spinner, “you can’t be sure on any set of data about the
results you will get.”

Erin: Even an outcome that is 25% chance can turn out more than the outcome that is 75%.

Next, she drew samples of 100, repeating this 5 times (the number of greens were 24, 34, 27,
25, and 34). At the end of these trials, her best guess was “one third, or 33%.”7 We then revealed
the spinner and asked:

7One third is obviously (to us) on the high side of her results. She may have chosen that estimate under the assumption
that we surely would have divided the spinner using some common unit fraction: “school” usually works like that.
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CONCEPTUAL CHALLENGES IN PROBABILITY 75

I: And so what’s the probability of green?
Erin: 30%. [When we revealed the spinner, a feature was turned on that displayed this percent

directly on the spinner.]
I: And you’re getting that 30% from what?

Erin: From the graph [points to spinner].

The fact that she said 30% (rather than “about 30%”) could be an indication that she had the
concept of a single theoretical probability that the sample proportion was estimating. However,
most of her subsequent responses, including the following, make this interpretation unlikely.8

I: And why do you take the probability from the spinner rather than from the graph down
here [points to graph of results of 100 trials].

Erin: Because the circle is divided up into two parts, so it will tell you more of what it is, because
this [points to graph] isn’t as—experimental and theoretical probability. This [points to
spinner] is a theoretical probability and the graph is an experimental probability.

I: I didn’t ask you “What’s the theoretical” or “What’s the experimental probability.” I just
said, “What’s THE probability.” And you’re giving the answer as . . .

Erin: You could get it two different ways.
I: Uh huh. So, and which way do you believe in most in this case?

Erin: More of the experimental, because if you do it by experimental you’re going to get more
accurate results, because there’s more than, like if you go by theoretical, you won’t make
it as much, and . . .

I: You wouldn’t make “it” as much?
Erin: Yeah, because say like 30% and 70%, you won’t make green 30% of the time, so it’s not

really accurate to when you actually try it out.
I: So this 30% [the percent showing on the spinner] isn’t going to be as accurate as what

you get when running it down here [the results of a trial showing in the graph]?
Erin: It will be CLOSE, mostly around the same distance. Like it might be—like one time it

might be 29% of the time, but another one might be 33%.

Our analysis of this and several similar statements Erin made later during the interview sug-
gests that a major reason that she “believes in” experimental probability more than theoretical
probability is because it reflects the variability she observes when she repeatedly conducts trials.
Thus, she seems to clearly have the two concepts:

1. Exactly 30% of the spinner is green and the computer is unbiased in its selection, and
2. The observed sample proportion is unlikely to deviate a large amount from 30%.

However, it is not clear that she has the idea that the proportion she observes in a particular
sample is an estimate of this 30% value.

Assuming that there is a coherent view underlying her responses, the obvious question is:
What is Erin’s conception of probability? The tentative view we offer here is that she regards the
30% value visible in the spinner as a guide to predict what will happen with actual trials rather
than as the underlying, true probability. One possible reason for her not wanting to regard the
30% as the true probability value is that if she uses this value as her prediction of what will occur
when she samples, she will rarely be (exactly) right. Indeed, with certain sample sizes (e.g., 25 in

8The words that are capitalized below were stressed in the interview.
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76 KONOLD ET AL.

this example), the expected number (7.5) is impossible. A second reason may be that a specific
value does not capture the variability that she knows occurs over repeated trials. Thus, our sense
is that she does not view the collection of experimental sample proportions as values that will
tend to cluster around a true value. Rather, she perceives them as the fundamental reality—as
“what’s really happening.”

Our interpretation is that Erin is uneasy about using a single number to describe a probability
because any specific proportion is unlikely to occur in a sample. Instead, she describes experi-
mental probabilities as “more accurate” because they better capture what will happen (i.e., they
are not the same from sample to sample). At various times she describes these probabilities as a
range of possible values that will stay “mostly around the same distance” from one another or, as
noted next, as single values that change from trial to trial.

I: So does the probability of green [with the red/green spinner] change every time we
run this?

Erin: Almost, yes. But there are still times that it’s the same.
I: What time would it be the same?

Erin: Like if you run it twice and it’s both 32% the same.

To summarize, from her answers to the Spinner Problem it appears that Erin views the the-
oretical and experimental probabilities to be related, but the relation is vague. In some sense,
she seems clear that the observed proportion on each trial run will not be too far away from the
theoretical probability and thus that the theoretical probability conveys information about the
situation. But we see no evidence that she views the theoretical value as the true probability that
the experimental results cluster around and provide estimates of. The fact that she seems to have
the notion of “experimental probability” as being a collection of values may be getting in her
way of thinking of a single sample proportion (which is what one generally collects in real life)
as an estimate of an unknown but fixed population value. Her responses during the remainder of
the interview both reinforce this tentative conclusion and reveal other interesting aspects of her
views of theoretical and experimental probability and the relation between them.

Die Problem

For the second problem, Erin explored a spinner model of a fair, six-sided die built in TinkerPlots.
After first presenting her a real die and then showing her the model, we asked her:

I: So what’s the probability of getting a 2 with this model in TinkerPlots?
Erin: Same thing as the [real] dice. Around 16.67%.

I: And why do you say AROUND?
Erin: Because, for one, like, in real life, the probability of things, you can’t really go out to a

decimal, and since in this probability you have a decimal. And also that if you actually
do it experimental, it will be around 16%, not exactly 16% every time.

This again suggests that her discomfort with the theoretical probability was that you rarely
get this value (here 16.67%). In this case, the fact that one cannot get exactly 1/6 2s in 100 rolls
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CONCEPTUAL CHALLENGES IN PROBABILITY 77

seems to loom large in her mind. In addition, she again focuses on the fact that the actual value
of the proportion of 2s varies from trial to trial.

After conducting numerous trials with the spinner model of the die, we further probed her
thinking about the probability. The last trial of 500 rolls had produced 18.6% 2s. We asked:

I: Would you agree that the experimental probability is 18.6%?
Erin: No, because how it changes every time. See, now it’s 18.6%, but then when I do it

another time [hits run], it is 16.4. So it changes every time.
I: Ok. And what’s changing?

Erin: The probability of green, I mean 2.

Here it appears that her view of experimental probability is close to the definition that she had
learned from her math class: the ratio of the number of successful occurrences to the number
of trials. This definition specifies the ratio as the experimental probability rather than an esti-
mate of the true probability. Thus, when that ratio changes with a new sample, the experimental
probability also changes. But note that she balked when we asked her whether a particular value
was the experimental probability. This suggests that she does distinguish between the percentage
observed from a particular trial and some underlying probability. She does not see the 18.6%
as the experimental probability even though it corresponds to the definition she has learned. So
instead, she uses the observed frequency to make a claim about the neighborhood in which the
experimental probability lies.

To determine whether she had some underlying notion of a true probability, we probed:

I: And so if you really wanted to know what the probability was—that doesn’t change—what would
you say it was and how would you find out?

As suggested in her response, she initially proposed averaging several experimental proba-
bilities, but this did not lead her to an underlying, fixed probability.9 She then offered that a
theoretical probability provides a single value, but again expressed a lack of confidence in this
approach.

Erin: I’d find out by, like, taking all the experimental probabilities, adding them up, and then
div. . . . Like say if I had 5 probabilities, and then dividing it by 5 and by finding the
average, and then I’d say that’s about the probability.

I: So you think that’s the way to get the real probability?
Erin: No, it’s just going to find a number it’s going to be around.

I: Is there any way to find the exact probability?
Erin: If you do it theoretically, yes.

I: But do you trust that theoretical probability?
Erin: Sometimes, or sometimes not, depending on if I’m too lazy to do the work, or too lazy

to think.

9Ireland and Watson (2009) reported similar findings with a student they interviewed who thought it might help to
compare results across several replications and yet apparently did not see this as the same as drawing one large sample
(p. 355).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
n
o
l
d
,
 
C
l
i
f
f
]
 
A
t
:
 
0
5
:
0
9
 
1
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



78 KONOLD ET AL.

I: So how about in this case? You told us the theoretical probability is 16 point—or is
exactly one sixth. So we can use that fraction so we don’t have that funny decimal. So
is the probability of rolling a 2 one sixth, or is it something else?

Erin: It’s just about—it will stay around one sixth because of how there’s six sides and you
only want one side of it [looking at the actual die].

I: But you’re not comfortable saying the probability IS one sixth, it doesn’t sound like?
Erin: I’ll say it’s ABOUT one sixth.

Bone Problem

The third problem involved determining the side most likely to land upright for an irregularly
shaped object—a deer’s ankle bone (see Figure 2). In this situation, one cannot determine theoret-
ical probabilities based on object symmetry. This, like the Spinner Problem when the spinner was
hidden, is a paradigm case where the true probabilities are fixed but unknown values. Collecting
data offers a way to estimate the probability.

After showing Erin the various labeled surfaces of the bone, we asked her:

I: If you were to roll this, which side do you think would be most likely to land upright?
Erin: Can I see it [the bone]?

I: Yeah [handing her the bone].

FIGURE 2 Three perspectives of the deer bone we gave Erin, showing
the bone’s six labeled (A–F) surfaces.
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Erin, like many adults given this problem (Konold, 1989), made some reasonable inferences
based on her inspection of the bone. Sides E and F are at the ends of the longer axis, and thus
most people quickly judge them as being relatively unlikely. Furthermore, the remaining four
sides are different enough that most people choose sides D or B as being most likely (which,
indeed, they are). Inspecting the bone, Erin commented:

Erin: F is very unlikely because of how it cannot really stand up. . . . Probably either a D or
a B, more likely a D, probably.

She was eager to roll the bone, and had actually rolled it once the moment we handed it to her.
Our expectation was that after rolling the bone that she would use this as an occasion to elaborate
her reasons for preferring the experimental approach to probability. In this context, it is the only
way one could proceed to get reasonably accurate estimates of the probabilities of the various
sides and therefore to determine which side was most likely. After eliciting her judgments based
on inspection, we suggested that she roll it again.

I: Why don’t you go ahead and roll it and see what happens.
Erin: And I’ll be wrong. [Rolls a B.] B. It’s a B or a D. [Rolls another B.] B.

I: So, wait a minute [as Erin rolls again]. So what do you think so far about your
prediction?

Erin: I was right.
I: What do you mean?

Erin: It more lands on B or D. Because how when you roll it, B and D are the flat surfaces,
so if it bounces, it will spin and then it will like find a flat surface that’s easy to balance
on. So B or D.

This interchange seems to suggest that she was reasonably satisfied with giving qualitative
answers of the form that particular events were quite unlikely while others were more likely.
Although gathering such qualitative assessments in such a situation is not unreasonable, we
wanted to determine whether she thought of these probabilities in a more quantitative way, and
if so, how to determine them.

I: And if you wanted to know which was more likely, B or D, how would you find out?
Erin: Looking at it [picks up bone and inspects]. Probably . . . B is more likely, because

when you drop this and it lands on B, see how this has, kind of right here, how it has
like a big spot? Like when you drop it, it will bounce off from that and then it will flip
over in the air and land on B.

I: And suppose you wanted to find out and say what the probability of B was. Suppose
you wanted to find that out. What would you do?

Erin: Look at it. Find the probability out of each one and then like kind of come to an
agreement.

I: What do you mean “find the probability out of each one”?
Erin: Because, like E. It’s not that likely. So it would be about like one eighth [rotates bone

to reveal another side]. This would be about like one. . . . No, wait [rotates back to
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previous surface]. This would be about like one fifth. [Rotates.] One seventh. [Rotates
to new surface.] And then like that. I’ll find something like that.

I: So if we gave that [bone] to you to take home and come back tomorrow and give us a
good, accurate estimate of what the probability of B was, what would you spend the
day—what would you do at home?

Erin: Ask my brother. Say, “Ryan, do this,” and he’d do it.

Apparently, it did not occur to her to roll the bone a large number of times and use those trials
to compute experimental probabilities. We had initially predicted that with the Bone Problem,
this approach would seem to her the only sensible way to proceed. So we repeated our request
after stressing that we would want a very accurate assessment of the probability of B and that we
would give her one day to come up with it.

I: So start your investigation. What would you do?
Erin: Ask my math teacher, because he’s very good with math.

I: And what kind of math would he use to figure that out?
Erin: Probability math [said jokingly].

I: So that’s what you’d do—you’d go ask the experts, huh?
Erin: Uh huh.

We next showed her results we got from rolling the bone 1,000 times, and she looked incred-
ulous that we would have actually rolled it that many times.10 However, she did use those data to
support her expectation based on physical inspection that B and D would be the most likely sides
to land upright. When we asked her to, she went on to use the data from 1,000 rolls to come up
with a figure of “approximately 28%” for the probability of B. But when we pressed her again
for how she might get an even more accurate estimate, she was doubtful that more data would
provide that information.

I: And so again, suppose I gave you a day to get a very, very accurate estimate [of the
probability of B]. What would you do?

Erin: Ask you. You know.
I: Well, what about rolling the thing a whole bunch of times and keeping track?

Erin: My hand will get too tired. And also because of how it’s more experimental it wouldn’t
really work [as she is rolling the bone] because no one has time to do it 1,000 times.

I: I did!
Erin: Not me. I have a very busy schedule.

I: But you could pay someone to do it. We’re going to pay you 1,000 dollars. You could
go ask your brother and pay him some percentage. . . . Would that help? If I rolled that
like a whole bunch more times and kept track, would that help me get the probability?

Erin: More—probably if you did it—probably, yeah. If you rolled it more than 1,000,
because it might be like a little more accurate. Or if you did a lot of different sets
and then got their average, and then it might be a little more accurate.

10These frequencies were A = 50, B = 279, C = 244, D = 375, E = 52, and F = 0.
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She had expressed this idea of averaging averages previously in the classroom as well, and at
that time we wondered if she had a basic understanding of the Law of Large Numbers. It seems
clear from her statement here, however, that she views the additional accuracy from conducting
more trials as resulting primarily from the act of averaging these averages, rather than from the
increased sample size. Thus we would predict that if we asked her whether she would get better
information from looking at the percent of Bs in 1,000 rolls or from looking at the averages of
the percentages obtained in 10 repetitions of 100 rolls, that she would prefer the later.

The tone of Erin’s previous response suggested that she was skeptical about the benefits of
collecting more data, and we probed her as to why.

Erin: Because I don’t know how to do it. [Picks up bone.] Because how like each of them
[each side] has a different probability of each one.

I: You gave us a probability based on this [pointing to numbers in table of 1,000 rolls],
and I assumed that you’d think that was an experimental probability.

Erin: [Nods slowly, but looks unsure.]
I: Or is it something different?

Erin: Experimental.
I: So is there a way to get a theoretical probability for this thing?

Erin: [Shakes head no.] Not that I know of. But you’re probably about going to tell me.
I: No. I don’t know how to do it.

Erin certainly had the idea that rolling the bone would give her useful information. She spon-
taneously rolled it at the first opportunity, and once we asked her to roll it, we had to intervene to
stop her from rolling it several times before we could probe her thinking. Furthermore, she used
results from her rolls and our 1,000 trials to support and somewhat modify her prior expectations.
But when we asked how she would go about generating a very accurate estimate of the probabil-
ity of side B, she had no idea about how to proceed. She assumed that experts would have some
way of getting these probabilities; however she apparently did not believe that they would do this
by rolling the bone a larger number of times. We conclude that what she was lacking was the
idea that the bone has a true probability of landing B and that results from trials would allow her
to zero in on what that true probability is. Indeed, to see how accurate probabilities could result
from conducting trials requires understanding the Law of Large Numbers.

Interview Summary

What was missing in Erin’s concept of probability was the notion of a true probability—the
idea that associated with a chance outcome is a single value of probability that we can model or
estimate but can typically never know precisely. This is an idea that commonly remains unstated
in the theoretical-experimental approach to instruction. We think that curriculum designers
assume that the student will accept the theoretical probability as the true probability, but this
assumption is unwarranted because there are really no good grounds for believing that any real
coin is exactly equally likely to land head or tails. With virtual objects like the red/green spinner,
it may be tempting to believe that the theoretical and true probabilities are the same, but even this
rests on beliefs about the computer’s random number generator.
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Erin did not appear to view the theoretical probabilities she calculated as true probabilities.
Indeed, she distrusted theoretical values because they do not, in general, predict what really hap-
pens. This perception may be supported by the term “theoretical,” which we think she interpreted
roughly as “this tells you what in theory ought to happen, but experimental probability tells you
what really happens.”

Moreover, while she preferred the information she obtained from conducting trials, she did
not yet have in place the ideas: (a) that there is some true probability (even if it differs from the
theoretical value) associated with the phenomenon, and (b) that the more data she collected, the
closer she could expect her estimate based on that data to be to that true value. For this reason,
she could not see a way in the Bone Problem to get more accurate estimates of the probability of
B from collecting more data. Rather, she suspected there was some other method that an expert
would use to construct probability information from the bone (e.g., calculating percentages based
on somehow knowing the precise area of each face).

Erin’s preference for experimental probabilities over theoretical might be an adaptation of the
“outcome approach” (Konold, 1989). In this approach, people see the objective of probability
as making predictions about what will happen on a next trial—predictions that can be evaluated
as being correct or incorrect after that trial. Erin was generally thinking not about single trials
but about samples, and in this regard, was not reasoning according to the outcome approach.
However, she still appeared to view the objective in probability as predicting what will happen.
From this viewpoint, the theoretical value usually fails, because you almost never get that exact
value appearing in a particular sample. On the other hand, the experimental probability, expressed
as a collection of possible values, is more often “verified” in a particular experiment.

CURRICULAR IMPLICATIONS

Recently, members of the statistics education community have suggested that introductions to
data analysis in the K-12 curriculum be oriented toward developing a set of “informal inference”
skills. Contributors to this special journal issue are among the strongest proponents of this reori-
entation. Although the various proposals for teaching informal inference differ somewhat in their
conception of what informal inference entails, all of them include the idea that students associate
some probability-based notion of uncertainty with inferences they draw from data (e.g., Makar &
Rubin, 2009). In this respect, these recommendations are a reversal of those made several years
ago by Moore (1992) and others (e.g., Watkins, Burrill, Landwehr, & Schaeffer, 1992) that we
limit study of probability in introductory statistics courses or even remove it entirely. In light
of this rethinking, some researchers have begun exploring how we might integrate instruction in
data analysis and probability to support one another (e.g., Konold & Kazak, 2008).

As we pointed out, prior research as well as many current curriculum materials that aim to
connect experimental and theoretical probability have tended either not to mention or to gloss
over a notion that we think is fundamental and directly supports the objective of students learning
to make inferences informally. That notion is this: when we consider the probability of some
event, we should be thinking of a specific, single value that we, in general, can never know.
It is this value, which we have been referring to as the true probability, that we are, in fact,
interested in knowing. This true probability is not ordinarily synonymous in real-life situations
with a theoretical probability. Rather, a theoretical probability is derived from a model that we
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CONCEPTUAL CHALLENGES IN PROBABILITY 83

sometimes can apply to a real situation, a model which is, at best, a good approximation to the
real situation. One way to determine how well the model fits is to collect data from the real
situation and compare the estimate of true probability with the theoretical probability.

This set of relations among theoretical (or model-driven) probability, the true probability, and
estimates of the true probability from frequency data, are the ideas and relations that, in our
opinion, should be the focus of introductory instruction in probability. From this perspective, it is
misleading and incorrect to claim that data from rolling a real die will converge on the theoretical
probability, which is how many curricula currently portray it. Instead, it converges on the true
probability of that particular die. It will only converge (also) on the theoretical probability if that
happens to be a perfect model for that die.11

We suggest that the current practice of having students explore probabilities associated with
situations such as die rolling and coin flipping from both the theoretical and experimental per-
spectives is not well suited to highlighting the idea of an unknown but true probability. This is
primarily because these explorations tacitly assume that students will accept the theoretical anal-
ysis as synonymous with the true probability. Yet, many students express their doubts about this
assumption in real situations. And well that they should. Data from over 26,000 rolls obtained
by Labby (2009) using a custom-built mechanical rolling apparatus and image-analysis software
suggest that dice (excluding those carefully produced for use in casinos) are in fact slightly biased
in favor of 1s and 6s. But our argument here is not that a theoretical analysis is inappropriately
applied to dice, coins, and spinners. Our point is that by tacitly assuming the theoretical model,
current curricular materials obscure the idea that what we really strive to know is the true prob-
ability. In many situations, the theoretical approach provides a model that may be reasonable;
however, results from actual trials will converge on the true probability, whatever that is.

Furthermore, by encouraging students to view experimental results as converging on theo-
retical probabilities, we believe an important opportunity is lost to develop fundamental skills
that are at the heart of informal statistical inference. When students think from the start that
they know the true probability (i.e., that it is the theoretical probability), then the idea of uncer-
tainty and confidence in one’s inference—indeed, the very idea of an inference—is lost. When
these students later move to investigations of naturalistic data, there are no clear theoretical or
known values for sample statistics to converge on. This disconnect has bedeviled statistics edu-
cation for years, leaving many university students to wonder what the probability chapter in their
introductory statistics textbook had to do with anything that followed.

An alternative approach to probability instruction that we think holds promise is for students
to start with explorations of situations such as the bone rolling or thumbtack tossing where there
is no clear theoretical model.12 In exploring these situations, students would see their objective
as estimating a probability by collecting data and that the data gave them some information
about the tendency of the object to land in particular orientations. These activities would serve
as the basis for students later coming to understand that while the data we collect can inform our
estimates of probability, we can never know exactly what that probability is for the same reason

11In practice, of course, it may be impractical to roll the die enough times to detect any difference between the true
probability and the theoretical probability.

12The CMP unit Data About Us that Erin used does include more than one such activity, for example, flipping
marshmallows and noting whether they land on an end or a side (see pp. 14–15 of the Teacher’s Guide).
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that we can never know the exact length of a table we measure, no matter how finely calibrated
our ruler.

A limitation of explorations of physical objects is that we cannot ordinarily collect enough
data in the classroom to observe the fact that our probability estimates from larger samples are
less variable than those from smaller samples. We therefore suggest that, after these initial activi-
ties with physical objects, we move students to exploring computer objects such as the red/green
spinner where students can collect and quickly analyze large amounts of data. In this environment
it would be possible, for example, for students to collect enough data in a few minutes so that they
could distinguish a two-sector spinner that was divided 71/29 from one that was divided 70/30.
Activities such as this would be aimed at developing the notion that as a sample gets larger, the
interval one can give of where the true probability lies can become narrower. Our objective would
be for students to come to understand that while we can never know the true probability, we can
narrow the interval where we expect it to be at a particular level of confidence. Our expectation
would be that applying this same logic and reasoning would not seem such a leap when these
students with this understanding moved on to data analysis and exploring random samples of
populations. If they have this basic understanding, only the addition of a method of quantifying
uncertainty would seem needed for them to understand the basics of formal statistical inference.
However, we should add that what might seem a small step or logical application of an idea often
proves to be a formidable conceptual challenge.13

Only after these ideas were established would we begin to involve the students in developing
theoretical models from sample spaces. But here we would stress that these models for predicting
true probability may or may not be very good. To make this point, we would include, along with
examples where the model holds rather well, situations where students’ initial expectations based
on apparent symmetry are, with data, proved wrong.14 Having them spin (rather than flip) coins
is one such context, where the spinning takes advantage of the slight asymmetry in real coins and
causes, with some coins at least, one side to land upright considerably more often than the other.
A similar result is obtained by rolling wooden, hexagonal pencils the sides of which have been
labeled 1 through 6. The results of 100 rolls are enough to convince most people that pencils
do not behave like dice, as one or two sides of the pencil will occur much more frequently than
the others. Careful analysis of the pencil reveals the reason—pencils are always at least slightly
warped.15

CONCLUDING REFLECTIONS

In this article we have examined the conceptual challenges students face in coordinating
theoretical and data-centered estimates of probability. Our reflections on one eighth-grader’s

13Indeed, there is evidence from both the history of the development of statistical thinking and from classroom
research that suggests that applying, for example, the idea of average as signal across different contexts is not a simple
matter (Konold & Pollatsek, 2002; Lehrer & Schauble, 2007). Thus, taking ideas of informal inference developed in
the context of probability and applying them to random sampling from populations of people (for example), will likely
require carefully designed instruction.

14See the activity developed by Rider and Stohl Lee (2006).
15If you have collected data on ten pencils, you can blindly draw one from the collection, roll it a few times, and

correctly identify which pencil it is. Each pencil has its own unique signal distribution.
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reasoning have led us to delve into the nature of the relationship between theoretical and exper-
imentally estimated probability. A point on which classical and frequentist theorists agree is
that probability is fundamentally about the objective world (in contrast to subjectivist the-
orists who maintain that probability is a gauge of belief). This is the common ground on
which the experimental and theoretical instructional approaches should build—that what we
are interested in knowing is the true probability of e.g., the bone landing on side B or the die
coming up 2.

The theoretical and experimental methods provide different ways of giving us information
about what this true probability might be. The experimental approach is the more general, in
that we can make headway with it in many situations where the theoretical approach is difficult
or impossible to apply. Furthermore, by purposefully identifying experimental probability as an
estimate of the true probability of the chance set up under investigation, we make strong links to
making inferences informally.
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