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ENCODING DIFFICULTY: A PSYCHOLOGICAL BASIS
FOR ‘MISPERCEPTIONS’ OF RANDOMNESS!
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Abstract

Subjects’ ratings of the apparent randomness of ten binary sequences were
compared to the time required to memorize those same sequences.
Memorization time proved a better predictor of the subjective randomness
ratings than measures of the “objective” randomness of the sequences. This
result is interpreted as supporting the hypothesis that randomness judgments
are mediated by subjective assessments of encoding difficulty. Such
assessments are seen as compatible with the information theorists'
interpretation of randomness as complexity.

Take a look at the two sequences below. Which sequence, [1] or [2], appears to be
the most random?

OXOXOX0OX000XXXX0X0X00 [1]
OX0OXXXXX0X0000X000XXO0 [2]

Many will take objection to this question, and understandably so. A recent article
by Ayton, Hunt, and Wright (1989) along with a set of published responses in the same
journal (Vol. 4, 1991), include a range of arguments for those interested in exploring the
debate about the meaning, theoretical status, and psychological investigations, of
‘randomness’. We cannot address those issues here.
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Mathematically, [1] and [2] have the same probability (.5 21) as any other ordered
sequence of the same length of being randomly produced by, for example, flipping a fair
coin. On this basis, they could be judged equally random. However, if we consider
various attributes of sequences, more of the possible sequences are like [2] than they are
like [1]. In this sense, [2] might be considered more characteristic of a random process
than [1].

One such attribute is the probability of alternation between the two symbols. For
every finite binary sequence, we can determine the relative frequencies of the two
symbols and the conditional probability of change (or continuity) after a given character
in the sequence. Given a sequence length of n, there are n-1 opportunities for a change in
symbols. (All but the first character in a sequence can differ from a preceding character).
The probability of alternation in a particular sequence, denoted P(A), is obtained by
dividing the number of actual changes of symbol-type by n-1. The values of P(A) for [1]
and [2] above are 0.7 and 0.5, respectively. When the probabilities of the two symbols are
equal, the value of P(A) in large, random samples will tend toward 0.5. This result
follows from the principle of independence — regardless of what has already occurred in
the sequence, the probability that the next character differs from the previous one is 0.5.
Sequences with values of P(A) other than 0.5 occur with less frequency. Additionally,
deviations from that modal value are equally probable in the two directions. Thus,
sequences with P(A) = 0.7, which contain more alternations than expected, have the same
probability of occurring as sequences with P(A) = 0.3, in which there are fewer
alternations (longer runs) than expected.

Sequence [2] is considered more random than [1] also from the perspective of
information theory. Randomness, in this account, is defined as a measure of complexity
(Chaitin, 1975; Fine, 1973, chap. 5). Despite the sophisticated computations used in
information theory, the notion of randomness as complexity is straightforward: a random
sequence is one that cannot be significantly shortened via some coding scheme. This
notion can be illustrated with even a simplistic coding convention. For example, the

XO0X0X0X0X0X0X0X0X0X0X 3]

perfectly alternating series above can be coded as 10XO 1X (10 repetitions of XO
followed by 1 X). By forming the ratio of the number of characters in the code (where 10
is considered as one character) to the number in the sequence, we can express the
complexity (or compressibility) of this sequence as 5/21 = 0.24. Using the same
convention, [1] would be coded as 40X 30 4X 20X 20, for a complexity measure of
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12/21 = 0.57. There are 18 characters in the code for [2], only slightly fewer than the 21
original characters; its complexity measure of 18/21 = 0.86 is much nearer the maximum
value of 1. Using this coding scheme, [2] would be considered more random than [1],
because compared with [1], it cannot be substantially compressed.

Despite mathematical reasons for considering [2] more random than [1], research
has shown that most subjects hold to just the opposite. In selecting random sequences,
people prefer sequences that include more altemations than typically occur (Falk, 1975,
1981; Wagenaar, 1972). The well-known gambler’s fallacy, according to which tails is
considered more probable than heads after a run of successive heads, may also be based
on the belief that symbols in a random sequence should frequently alternate.

Kahneman and Tversky (1972) have explained these results by suggesting that
people rely on error-prone “heuristics.” In their account, the judgment that [1] is more
random than [2] is based on an incorrect expectation that even small random samples will
resemble their parent population (Tversky & Kahneman, 1971). [2] is judged less random
because it contains longer runs (e.g., XXXXX) which do not capture or represent the
equal distribution of symbols in the population. Random sequences, because they are
random, must also avoid obvious patterns. The perfectly alternating [3] is accordingly
judged to be less random than [1]. For a sequence to be considered maximally random, it
must strike a balance between avoiding simple alternating patterns and maintaining a near
equal number of symbol-types in any of its segments.

In the account summarized above, human judgments of randomness are based on
the notion of similarity. Features of a sample are compared to the corresponding features
of a population, and the more similar a sample is to a population, the more likely it is to
have come from that population. Our research was designed to investigate an alternative
hypothesis — that peoples’ perceptions of randomness are based on assessments of

complexity.

People might assess the complexity of a sequence by gauging how difficult that
sequence would be to encode. We frequently are given information that must be copied or
memorized. If that information can be reorganized into meaningful “chunks” (cf. Miller,
1965), it can be more efficiently memorized or copied. Chunking is obviously a way of
compressing data. Therefore, assessments of *‘chunkability” are also judgments about
difficulty of encoding. We are suggesting that people might make use of this type of
assessment in judging the randomness of a sequence.
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In the study reported here, we used the time required to memorize a sequence as a
measure of encoding difficulty. We compared these times with results from prior research
in which subjects rated the perceived randomness of the same sequences. If randomness
judgments are rooted in assessments of complexity, we would expect that those
sequences which were hardest to memorize would be perceived as most random. Such
results would provide evidence of a psychological basis for people’s “misperceptions” of
randomness — that from the standpoint of human perception, sequences of P(A) = 0.6
are more complex, or difficult to encode, than sequences of P(A) = 0.5, and for this
reason they are judged as more random. Furthermore, if people base their randomness
judgments on the difficulty of encoding, the complexity definition of randomness might
prove to be an intuitively compelling introduction to the concept.

Method
Randomness Ratings

Data concerning apparent randomness were obtained in prior research by Falk
(1975, 1981). Subjects were shown a set of 10 sequences, which included [1], [2] and [3].
These sequences were of length 21, and comprised two symbols whose frequencies
differed by 1. The P(A)s of these sequences ranged from 0.1,0.2, 03 . ... to 1.0. Subjects
rated each sequence on a scale that ranged from 1 (not at all random) to 20 (perfectly
random). Ratings were obtained from 219 subjects.

Memorization Task
Ten different subjects were individually presented with the same sequences as were

used in the rating task. The sequences were presented as shown in Figure 1 ona
Macintosh computer.

XXXXXX000XX0000000XXX

1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21

Figure 1. Screen display of target sequence P(A) = 0.2

Subjects were instructed to study each sequence until they could reproduce it from
memory. When a subject was ready to attempt recall, he or she hit the “return” key. This
caused the target sequence to be masked. The subject could then enter a “response”
sequence in a field provided on the screen, as shown in Figure 2.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2. Screen display showing masked target sequence (above)
and field for entering response sequence (below).

After entering a response sequence, the subject again hit the return key. If the
response sequence was correct, both the target and response sequences were displayed
together. The next target sequence could then be displayed by clicking on a “next”
button. If the response sequence was incorrect, it disappeared, and the target sequence
was again displayed. Subjects continued until they were able to enter the correct
sequence.

Subjects were told the computer was recording the total time the target sequence
was displayed. They were also told that time spent entering a response sequence was not
being recorded and were shown how to use the delete key, which permitted editing a
response sequence up to the time the enter key was depressed. They were instructed that
the objective was to memorize the sequence as “efficiently” as possible, rying to
minimize total viewing time.

The order of presentation of the ten sequences was randomly determined for each
subject by the program. These ten experimental sequences were preceded by four practice
sequences. The practice sequences had P(A)s of 0.2, 0.9, 0.5, and 0.3 and were always
presented in that order. The subjects were not informed that these were practice sequences.

Results
Randomness Ratings

The randomness ratings (denoted AR, for “apparent randomness™) for each
sequence were averaged over the 219 subjects, and then linearly transformed to range
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from O to 1. Figure 3 shows these averages plotted as a function of P(A). This function
peaks at P(A) = 0.6 and is negatively skewed.
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Figure 3. Plot of EN, AR, and DE as functions of P(A).

For comparison purposes, Figure 3 includes values obtained from an “objective”
measure of randomness based on the “second-order entropy” (EN) of the sequences (see
Attneave, 1959, pp. 19-21). This function peaks at 0.5, and is symmetric! around P(A) =
0.5. As reported in the introduction, these data indicate that subjects select as most
random, sequences that include more than the expected number of alternations. Indeed,
these subjects tended to rate sequences with P(A)s of 0.6, 0.7, and 0.8 as more random
than the objectively most random sequence of 0.5.

Memorization Task

The times required to memorize each sequence were first standardized for each
subject. For each P(A), we computed the mean of the standard scores over the ten
subjects, and then linearly-transformed these to range from O to 1. This value, which is
our measure of encoding difficulty (DE), is also plotted in Figure 3. The function of DE

p&ks at P(A)=0.7.

1Since in the family of sequences we used there is a sequence with p(A) = 1, but not one with P(A) =0,
the function in Figure 3 is not entirely symmetric.
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If encoding difficulty mediates judgments of randomness, than we should expect
measures of encoding difficulty to be better predictors of the subjective randomness
=arings than are measures of objective randomness. Indeed, the correlation between DE
=nd AR is .89, whereas the correlation between EN and AR is .54. In addition, difficulty
of encoding, which was hypothesized to account for subjective randomness, is better
correlated with AR (.89) than it is with objective randomness (.71) .

Conclusion

The data presented here offer some support to the hypothesis that judgments of
~=ndomness are mediated by subjective assessments of complexity, an assessment that
may be accomplished by judging how difficult the sequence would be to encode. The
results of the memorization task are preliminary in that they involve only ten subjects,
and these were not the same subjects who provided the randomness ratings. We are
currently conducting a larger study in which subjects first rate the randomness of various
sequences, and then either memorize or copy those same sequences. The copying task
allows subjects to enter a sequence in “chunks,” copying only what they can easily
remember , thus reducing demands on short-term memory.

Though preliminary, our findings do suggest that human judgments of randomness
are based in part on the formally sound criteria of complexity. Such a finding could have
important implications for instruction. For example, introductions of randomness as a
blind process of selection, or as statistical independence, may be difficult to comprehend
necause students lack prior intuitions into which these ideas can be integrated. Our results
suggest that an interpretation of randomness as complexity may have more intuitive
appeal to students, and therefore may provide the basis on which an initial understanding
of randomness can be constructed.
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