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Highlights of related research
by Clifford Konold and Traci Higgins

e can conceptualize data investigations as involving a four-stage process:

{1) ask a question, {2) collect data, (3) analyze data, and {4) form and
commurnicate conclusions. Real research, however, seldom proceeds in this
orderly fashion. One reason is that conscientious researchers often find

themselves retracing their steps, While writing the report, they think of another
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analysis to do and perhaps return to the study site to collect more data.
But research does not proceed linearly for a more profound reason, which
is that these research phases are not independent components.

Experienced researchers look forward from the beginning. Although
they don't analyze data before collecting them, they imagine doing so and
make guesses about what they will find. They develop and refine their
questions and decide what data to collect by thinking ahead to the kind of
conclusions they would like to make, the statistical methods they can use,
and to their intended audience. Experienced researchers also look
backward. When it’s time to analyze the data, they do so from the
perspective of their original question, testing the intuitions they started
with against what the data reveal. And typically their questions evolve
and change as they discover unanticipated results in the data. In these
respects, data analysis is ltke a give-and-take conversation between the
hunches researchers have about some phenomenon and what the data
have to say about those hunches.

It's important to keep this more complex picture of data analysis in
mind as we consider what both the Working with Daia casebook and the
research literature tell us about students” statistical thinking. Simplistic .
views can lead to the use of recipe approaches to reasoning with data and
to the treatment of data as numbers only, stripped of context and practical i
importance. Conversely, staying grounded in the data and attentive to
what they have to say keeps the tools of data analysis—the collecting,
graphing, and averaging—in their appropriate, supportive role,

Although there is considerable research on the reasoning of college
students, there is relatively little on how younger students reason and -
learn about data. Because data analysis has only recently become an
integral part of the pre-college curricuium in the United States, we have
limited practical experience with what works and what doesn't,

Accordingly, we draw heavily in this chapter on what we, as researchers,
have learned from the cases in the Working with Data casebook, connecting
our observations to published findings when we can. In our opinion, the
reflections of these teachers and their descriptions of students’ thinking
constitute one of the richest sources of information to date on children’s
reasoning about data and how their thinking evolves during instruction.
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stcrTionN 1

Forming a statistical question

Turning observations into data involves an explicii process of abstraction. In this
process, we transform & question about the real world into a statistical question,
one we can answer with data, Young students begin to struggle productively with
this process as they discover, often while designing surveys, how difficult it is to
pose a question that different people interpret in the same way.

A data investigation usually begins with a question about the real world.
For example, students at a K-8 school believed that the water from
fountains on the third floor was better than water from the floors below
{Rosebery, Warren, & Conant, 1992). A combined class of seventh- and
eighth-grade bilingual students decided to see whether there was a
difference in the taste of water from different floors.

Coming up with an inferesting question is often the first step in a data
investigation. However, before collecting data we must transform our
initial question, which is often too general, into a more specific, statistical
question, one that we can answer with data. In the above exampie we
might reformulate the question as “In a biind taste test of water samples
from each of the three floors, which sample will most students prefer?”
The statistical question allows us to develop measurement mstruments
and procedures that we can use to collect the data. Rosebery et al. {1992)
do not provide details of the study, but we can presume that students
made a number of decisions before collecting data: Who would they use
as tasters? How many should they test? Should tasters drink directly from
fountains or from cups? Should the same stadents taste all three water
samples? How should tasters indicate their preference? Such decisions are
part of the process of turning a general question into a statistical one that
can be answered with data.

Elementary students draw on their own experiences as they learn how
to formulate statistical questions. By thinking about how they themselves
would answer a proposed survey question, for example, they quickly
discover not only the range of possible responses, but that there are
multiple interpretations of a question and that the wording of the
question matters. In the words of a second grader, “Everyone has to

Chapter 8 » Section 1 167

ie

15

20

25




understand your question. If they don’t understand your question,
everyone will be answering just any old way” {(p. 32).

In case 5, Nadia chalienged her fifth graders to rethink the wording of
a question so that it would not be interpreted in “any oid way.” The
students initially proposed to include on their survey the question Do you
speak more than one language? Nadia asked them:

How do we know when someone “speaks” another language?

- For example, suppose you know how to say “Where is the
bathroom?” in French, and that's all you know. Is that
speaking French?

One student responded, “No. We mean speaking fivently.” This, in
turn, raised the issue of what is meant by “speaking fluently.” The
students resolved the problem through more discussion {p. 28).

We carefully shape guestions not only so that people interpret them in
the same way but alse so we will get the information we are interested in.
It is easy o become so engrossed in formulating a more precise question
that we lose track of what we wanted to know in the first place. Case 6
describes a pair of second graders, Natasha and Keith, who were inter-
ested in finding out from fellow students, How many states have you visited?
They quickly realized that visited could be interpreted in many different
ways. Natasha offered further criteria for defining a visit:

[A] visit only counted if you were going to that state for a
specific purpose, not simpiy passing through to reach another
destination. Thus, airports could not count. If you stayed with
a friend out of state, it counted only if you really, really
wanted to see them and you stayed with them for more than a
day. (p. 33)

Despite these criteria, they phrased the question in their final survey as
How many states have you ever set foot in? They apparentiy adopted this
wording at Keith’'s prompting because, phrased this way, the question
seemed cleat. Natasha was not satisfied. She thought the phrase “set foot
in” missed the point. She wanted to know whether students had traveled
to, rather than through, a state. In tfransforming a general question to a
statistical one, the challenge is not only finding a wording that people will
interpret consistently, but also making sure the statistical question gets at
what you wanted to know in the first place.
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SECTLILON 2

Differentiating between the observed
event and the data |

Data are records of things we observe happening in the world. In the process of

creating data, students learn to distinguish the data from the event they observe.
The data offer o simplified model of the observed event, and because of this, they
do not communicate everything about that event. Once the event has been objec-
tifizd in data, however, students can ask questions of the data that may nol have
accurred to them befare.

In formulating questions and leaming to collect and analyze data to
answer them, students learn to walk a fine line, They learn to see the data
they create as separafe from the real-world events they observe, while
treating the numbers they generate as meaningfil referents to those

~ events. Distinguishing between data and the event entails a particularly
delicate balance, because taken to the extreme, it can lead to reasoning
about data as numibers only, stripped of the context that gives them
meaning (Moore, 1992),

“Creating data” may seem an odd phrasing. However, data are not
lying around like melons on the ground to gather up and cart off to the
table. Turning observations into data involves an explicit process of
abstraction. Lehrer and Romberg (1996) claim that the “very idea of data
entails a separation between the world and a representation of that
world” (p. 70). In reasoning about data, students construct a model of
some situation or event that, like any model, is only “a partial represen-
tation” (Hancock, Kaput, & Goldsmith, 1992, p. 339).

In creating data, we must consider what aspects of a situation we are
most interested in and make sure that we explicitly record that irformation.
Furthermore, we must record that information so that later, when we or
others look at the records, their meaning is clear. It is easy when recording
data to overlook things that are obvious at the time but will not be later (as
when we myopically iabel a file “Recent articles”}. Students discover this as
they work with data they have created. Fifth graders in a study by
Hancock, Kaput, and Goldsmith (1992) collected data to determine which of
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three cafeteria meals students most liked. The student researchers
conducted surveys in the cafeteria on different days, asking students
whether they had “bought,” “brought,” or skipped Junch on that day
(“none”). Their plan was to determine ment preferences by comparing the
rumbet of stadents buying versus bringing hunch on a particular day. Their
rationale was that since daily menus were published in advance, many
ctudents would decide whether or not to bring a lunch on a particular day
depending on whether they liked what the cafeteria offered. As they began
analyzing their data, the student researchers discovered that they had failed
to record what meal was served. On the day they recorded the data, a mark
under a column on the survey had a clear meaning, a meaning that was
gone once they had forgotten the menu of the day.

When interpreting data, we must consider what information the data
provide about the real-world event as well as what information they do
not provide. The casebook includes numerous examples of younger
children who do not distinguish between the data and the situation they
observed when they recorded the data. In case 16, Barbara gave each of
her kindergarten students a bag of candies to count. The class created a
line plot with stick-on notes on which each student had recorded the
number of candies in his or her package. The teacher asked, “What can
you tell from this graph?”

PrasHaT:  We eat candies.
Rocky: Joy has the most.
- DesvoND:  We know how many I ate.

TAMMY: ... Abigail's is the most . . . because hers is a
bigger number, (p. 88)

The students associated names with values, even though the graph
they were interpreting did not show who had counted each bag. Students
were basing their interpretations on their memories of counting and
eating the candies rather than on the data they had abstracted from that
event. Throughout the cases we see similar examples in which data serve
merely as pointers to the more complex event. In forming conclusions,
these students draw without awareness on their memories of the event as
well as on the objectified data. As a way to help her students begin io
distinguish the information in the coded data from what they knew from
observing the events, the teacher in this case suggested to her students
that they “pretend that the principal walks into our room and looks at this
chart. What would he know from this chart?”
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While we see some students treating data as if they provide more infor-
mation than they explicitly do, we also see instances when students take a
restrictive view of data, as if once collected, data can be used to answer
only the question initially asked. Lehrer and Romberg (1996) worked with
a group of fifth graders to design a survey of student interests. Among
other things, the survey asked students to list their favorite school subject
and their favorite winter sport and to estimate hours spent watching TV.
After collecting the surveys, the instructors asked the student researchers
to come up with questions that they could “ask about the data.” To these
fifth graders, this request was ridiculous. Questions, they countered,
could be posed to people, but certainly not to data, The instructors
prompted the students with various examples, such as “Which i$ the least
favorite school subject?” The students successfully used these examples to
generate a list of similar questions. But they needed further assistance to
see that they could answer many of these by analyzing the data they
already had. Their initial impulse was to conduct another survey using
these new questions.

As Hancock, Kaput, and Goldsmith (1992) point out, once recorded,
data become objects in their own right, objects that we can manipulate
and query quife independently from the observations from which we
abstracted them. Students can manipulate and organize data by stacking,
grouping, and ordering—things they often couldn’t do, or do easily, to
real events.

Because students can reorganize the data in a number of different
ways, they can pose and answer questions that may not have occurred to
them before collecting the data. For example, kindergarten and first-grade
students worked with data gathered from a school lunch count
(Alexandra’s case 1). While gathering data, students became concerned
that there were only 15 pieces of data, but a total of 18 students in their
class. The three missing students turned out to be absent that day. One
student was intrigued that they had gotten an attendance count from data
they had gathered about lunches. She wondered how this was possible:

“Can the pins [clothespins used to record answers to the survey
questions] tell only one thing? . . . If the pins tell us how many
school lunches and how many home lunches there are, can they
tell us how many are at school, I mean at the same time?” (p. 7)

This student understood that the sum of the yes and no counts would
equal the number of students in the class that day, but she struggled with
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the idea that “15 could stand for how many in scheol as well as how
many students were getting lunch” (p. 7). We see her struggle as the 165
beginning of the discovery that once recorded, data have a life of their
own, and that when we examine therm, we may think of new questions
that the data can answer.

Sometimes we can operate on data much as we can the corresponding
real-world events. Exploring these instances can help students develop 170
confidence that by operating on data, they can get additional information
about the real events they observed. In Maura’s case 27, student Anma
suggests that the way to decide whether third graders are taller than
fourth graders is to have each group of students lie down end to end and
measure them to determine their total height. The teacher asks whether 175
they could use the height data already collected to figure out what would
happen if they performed Anna’s physical experiment. She reminds the
students of Celia’s earlier claim that the total of all the fourth graders’
recorded heights would be greater than the third graders’. Anna counfers,
“But how can you be sure? If we did it, we would know.” Leah explains, 180
“There’s an easier way to do it. You can just add up all the numbers and
see which one is bigger. That'd be easier than having to go out and
measure it” (p. 159).

SECTI1ION 3

Creating and interpreting data displays

Different types of displays highlight different aspects of data. Younger students
tend to make plots that allow them to identify and answer questions about
individual data points. As they gain more experience with data, they begin using
representations to answer questions about the data as a whole—how they are
distributed and where they cluster.

In the form we first collect them, data are usually pretty useless. A stack of |
completed questionnaires is like a messy room in need of a good cleaning. | 185
To find what we want, we must organize the information. How we

organize data depends on what we want to know. 1

172 Working with Data



Young students with little prompting construct a variety of spatial
arrangements that serve to organize categorical data. Rosemarie’s first
graders {case 8) divided their papers into colummns, rows, or quadrants
and drew pictures or symbols o represent various types of games
students played during recess (see Figure 42). When working with
categorical data, children readily clump like responses together and from
these clumps figure out which responses are more or less popular. '
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Figure 42 A student’s representation of categorical data.

We also see young children using a variety of representations to
spatially organize numerical data. One group of second graders in
Isabelle’s case 13 represented the number of teeth lost by classmates in
tabular form, ordering the data according to number of lost teeth (see
Figure 43). The representation has considerable detail including, for each
case, the student’s name, a pictograph showing number of teeth lost, and
the corresponding numeral written in two or three different locations.
This representation would be useful for looking up how many teeth a
particular student had lost or for quickly determining who had lost the
most or least number of teeth. However, for other purposes, such as
describing characteristics of the class as a whole, their representation
would not be as useful.
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Figure 43 A tabuiar representation that identifies individual
students and the number of feeth they had lost.

Another group of students in case 13 represented the same data with
pictographs only, drawing faces with toothy grins. A student noted one of
the disadvantages of these iconic representations: “It's hard to draw teeth”
(p. 71). Pictographs can include detail that takes time to render and seems
to convey no useful information. It is important to notice, however, that
even in making pictographs, students are abstracting elements from the
observed events. For example, in representing the number of teeth lost, the
teeth drawn in the mouth stood for missing teeth, and their location in the
drawn mouth appeared unrelated to the location of gaps in students’
mouths. Thus, pictographs are often a way for young students to begin to
abstract or simplify information in the process of coding events.

With pictographs, students form explicit links between the data and the
event, which may help them reason about the data in their appropriate
context. It would therefore be a mistake to rush students info using more
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abstract forms. Purthermore, the level of abstraction appropriate for a
particular representation depends on the questions students have. Given
that younger students are drawn to questions about who has the most
and where they personally fall within a range of values, it makes sense
that their representations make it easy to read off individual values and to
identify the person they belong to.

Different displays serve different purposes. Therefore, we should
choose our particular display by considering our objective, the type of
question we have, and the audience we want to communicate to. Thus,
one type of representation is not inherently superior to another. Graphs
are not better than tables; bar graphs are not better than pictographs.

Sconiers (1999) describes a project undertaken by kindergartners who
were frequenily asking their teacher for help tying shoes. The class
reasoned that if they all knew which of them could tie shoes, then those
who didn't know could get help from those who did. After conducting a
survey, they posted a list of names of those who could tie shoes. Had the
class not been trying to solve a specific problem, they might have made a
graph showing how many students could and could not He shoes, a
useless plot for their purposes. The list worked.

Even decisions about how big to make a graph and whether to label
axes or provide titles should depend or our purposes and should not be
made according to a fixed list of “graph dos and don‘ts,” Suppose
students wanted to quickly make a line plot to help them see how the
data were distributed. It would be unnecessary in this case to fuss with
the display or label the axes as long as the students kept in mind clearly
what the symbols on the plot represented. On the other hand, if these
same students made a graph to communicate their findings to the whole
class, then labeling the axes and taking care to make the display easily
readable would be critical to achieving their goal.

Although there is not a hierarchy of graph quality, some representa-
tions are harder than others to learn to interpret (Bright & Friel, 1998).
Roth and Bowen (1994) describe the way we move from concrete to
increasingly abstract statistical representations as we represent numerical
data with maps, lists, graphs, and equations. As we move along this
continuum, information about individual data values becomes increas-
ingly aggregated and obscured.

Case 13 (the lost teeth case) provides a good example of plots showing
different levels of aggregation. In Figure 43, we can identify individual
students and the teeth they lost. In Figure 44, we still can identify
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individual teeth, but not the identities of the student to whom they
belong. Finally in Figure 45, individual teeth are no longer evident. [Note
that numbers differ because each figure represents data collected in a
different classroom.]

The individual cases “disappear” into larger aggregates. By increasing
the level of aggregation, we can

perceive ever more general features of the data at the expense of
being able to identify individual data values. It is easy to forget,
however, the learning required to interpret the more abstract
statistical plots. As a result, [educators] often encourage students
to use plots and summaries before they sufficiently understand
them and, by doing so, effectively pull the rug from beneath them.
(Feldman, Konold, & Coulter, 2000, p. 119}

Figure 44 i this representation, each surveyed individual is represented
by a stack of cubes showing the number of teeth iost.

Figure 45 Here, individual responses are aggregated to indicate
the number of students who lost various numbers of teeth.
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As Bright and Friel (1998) point out, graphs use axes and other display
elements in a variety of ways. We can see some of the differences in
Figures 46 and 47. At a glance, these two graphs seem to represent data in
exactly the same way. But look closer. Figure 46 is a case value plot. As the
name suggests, case value plots display the value of each element in the
data set. In this instance, the bar lengths show the cost (value) of each
grocery item {case).

Comparing Prices at Two Markets

$3.00

$2.50

$2.00
$1.50
$1.00

$0.50

$0.00
Canned tuna Vegetable soup Cornflakes Paper towels

Store brand {comparabie sizes) .

Figure 46 A case-value plot.

Newspaper Prefarences
60

50

30

20

10

Men

Women

Daily Herald Community Gazette Town Bulletin

Figure 47 A frequency bar graph.
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The graph in Figure 47 shows the number of men and women who
prefer each of the three newspapers in their town. This is a frequency bar
graph. In this type of graph, a bar’s height is not the value of an
individual case, but rather the number (frequency) of cases (Tespondents)
that all have a particular value. For example, the left-most bar shows that
35 of the men (cases) selected the Daily Herald.

We can also see the difference between these two types of graphs by
comparing Tim’s and Kenny's family-size plots from Denise’s case 14 (see
Figure 48). Tim made what is sometimes referred to as a line plot. He repre-
sented family size along the horizontal axis, and each X stands for one
family. The height of the column of X's above a particular location shows
the number of families of that size. Thus, this is a frequency graph, and if
Tim were to replace the stacks of X’s with bars, he would have a frequency
bar graph much like the newspaper preferences graph in Figure 47.

Kenny, on the other hand, represented each individual family in his
sample along the horizontal axis. The height of the column of X's above
each family (case) shows the size of that family. Family number 1, for

example, has 12 individual members. This is a case value plot, and if
Kenny replaced stacks of X’s with bars, his graph would look much like
the grocery cost-comparison graph in Figure 46. Kenny’s plot provides
ready information about the relative sizes of various families, whereas

Tim’s plot provides ready information about how frequently various
family sizes occur.
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Figure 48 Tim's fine plot {left) shows the frequency of different family sizes; Kenny's case value
plot {right} shows the size of each of 12 families.
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As students begin attending to frequency as well as case value, they
sometimes struggle to distinguish between them. In Isabelle’s case 13, two
boys used pairs of cube stacks to represent separately the case value and
that value’s frequency (see Figure 49). According to these boys, the first
stack on the right represented 2 people (frequency) and the next stack of 2,
moving left, represented the number of teeth lost by those students
{value). The third stack from the right represented 3 people (frequency),
and the fourth stack represented the number of teeth (value) lost by those

three people (p. 78).

Figure 49 A student representation in which number of people and number of teeth are
represented by separate stacks of cubes.

Another group of Isabelle’s students created the frequency graph
shown in Figure 45. In doing so, they struggled with how to coordinate
values and frequencies. One of them exclaimed, “Oh, now I get it” (p. 73)
when he realized that the numbers along one axis could represent the
number of teeth lost (value), while the number of faces drawn along the
other axis could represent the number of people who lost that many teeth
{frequency).

We have siressed that in deciding how to organize and represent data
in graphs and tables, it is critical to consider what information will
address your question. These considerations tend to fade into the
background, however, if students are focused primarily on applying
learned conventions. Roth and McGinn {1997) point out that “In schools

. students make graphs for the purpose of making graphs” (p. 93).
Students are well practiced, therefore, in setting aside their own intentions
and purposes to get down to the business of producing “good graphs.”

Deciding on plot scales and on what data they should include in their
plots poses a number of interesting challenges to students. Many students
maintain that plot scales should not extend beyond the range of observed
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values, while others argue that the scales should extend to include values
that could have occurred or far enough, at least, to make a pleasant
boundary. '

In Olivia’s case 3, two fourth graders considered what scale to use in
plotting data on family size. Their scale initially went from 4 to 18, the
actual range of the data. The teacher prompted them to consider what
range they might need if they collected more data. One student replied,
“I think that 2 could happen. You could have one kid and just one parent.
Maybe their father died or something” (p. 14).

After discussing what made sense in this instance, the students redrew
their scale to allow for the possibility of smaller families. Of course, there
is no single correct scale for their plot. What is significant in this case is
that the students came to perceive the scale range as a choice that hinged
on the particular data and on their question.

In later grades, students confront additional sca]mg decisions: Should
they group numeric scores into larger interval sizes (e.g., show the
frequency of all values 0—4, 5-9 . . . with one bar each)? How big should
they make the x and y axes relative to each other (e.g., should the bars in a
frequency graph be tall and skinny or short and fat)? Choices about scale
affect how the data appear. As students gain more experience with scaling
decisions, they come to see that there is no ideal scale that will make the
data appear as they “really” are. Thus it is best to try out several alter-
native plots and scales and learn what we can from each. When it comes
time to summarize results for others, we select those representations that
do the best job of telling the story sharply and fairly.

SECTEHON 4

Representing data values of zero

As in other areas of mathematics, zero poses special challenges o students.
Regarding zero as synonymous with “nothing,” some students argue against
including in their representations either values of zero or nonoccurring (zero-
frequency) events. They eventually come to regurd zeros as any other guantity
and understand that whether to include them or not depends on what they want
fo kiow.
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A community planner needs to know the size and composition of families
in a certain neighborhood. Looking at census information, she notes that
many families have no children. These 0-children families are part of the
information she needs, no less important than 6-children families.

Students hold strong and differing views about whether to include
data values of zero in their data piots and summaries. De Lange, Burrill,
Romberg, and van Reeuwijk (1993} describe high school students strug-
gling with this: “Do we have to include these [O-children] families or
not?” (pp. 66-67). In case 15, Nadia's fifth graders were discussing a line
plot that showed the number of instruments each student in the class
played. In summarizing the data, some students suggested that the
number of instruments ranged from 0 to 3. Rico disagreed.

Rico: But, but zero shouldn't be there! If they play no
instruments, they shouldn’t be there. This is only
for finding out how many instruments you play,
and if vou don’t, you shouldn’t be there! . ..

JaneEs: I disagree. . . . I think that the graph has to show
the zero children because then it is iike we only
have 15 children in the class. We interviewed all
1%, and if we get rid of 4, then we don’t show the
whole class. (pp. 85-86)

Besides this concern about values of zero, students also wonder
whether to represent possible outcomes that never occurred (occurred
with 0 frequency). A third-grade teacher (in an unpublished DMI case)
reported that one student asked her classmates to name their favorite kind
of math. The girl recorded their responses by putting a corresponding
math symbol {+, x, +} next to each student’s name. Looking at her final
resulis, she noted: '

No one even picked subtraction, I could just write the
subtraction sign at the end. I could leave it out, leave it blank
because nobody likes it best.

Whether or not to represent frequencdies or values of zero depends, of
course, on the particular questions being investigated. Do Nadia’s
students in case 15 want to look at the distribution of instrument playing
in the whole class, or do they want to investigate whether those students
who do play instruments play more than one?
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With experience, students learn that omitting or including frequencies
of zero can drastically affect how they perceive those displays. For
example, Maura's students in case 12 plotted the number of years each of
their families had lived in town. The plot shows a few families living
there for more than 16 years, and as much as 37 years in one case (see
Figure 50). More significantly, it shows two distinct clusters, with one
group of families having lived in town between 0 and 6 years, and the
other between 10 and 14 years. values.

Seeing these two separate clumps may raise interesting questions about
factors affecting town growth. Indeed, an economic recession had hit the
area beginning about 10 years earlier and more recently had abated.
However, note how the plot appears in Figure 51 when we omit nonoc-
curring values. Extreme values above 16 no longer stand out, and the two
clusters are hard to see.
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Figure 56 Number of years students families have fived in their town. The continuous scale
hightights gaps between data vatues.
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Figure 51 The same data as in Figure 56, but here plotted on an axis that eliminates
nenoccurting values.
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SECTION 5

Viewing data as an aggregate

Younger students tend to view data as a collection of unique individuals.

As the questions they explore change, they come to see data as an aggregate,

a distribution of values with emergent features, such as center, spread, and shape,
which are not evident in any of the individual cases.

David Moore (1990) has suggested that there are five core ideas of
statistics. Topping his list is the awareness that variation is everywhere.
individuals are variable; repeated measurements on the same individual
are variable” (p. 135). The idea that individuals vary is apparent even to
young students. By “just looking around the room,” students in a
combined third- and fourth-grade class could see that their heights varied
and that not every fourth grader was taller than every third grader
(Maura’s case 27, pp. 154-155). Their classmates come in a variety of
heights, hair colors, and termnperaments. Their local weather varies not
only from season {0 season, but day to day, and sometimes from one
minute to the next. If students know nothing else when they begin
collecting data, they know that they'll geta variety of values.

Variability among individuals is obvious o students. What is not s0
obvious is how to quantify variability in a group or to perceive and
characterize the group as a whole when individuals in that group are so
different from one another.

In their early experiences with data, students tend to focus on
describing individual data points, or clusters of similar individuals. In her
case 7, Barbara describes an activity in which kindergarten students report
their favorite color. As the teacher records the information on the board,
students spontaneously comment on which color is ahead—the modal
value. However, the next day when the teacher asks, “What does this
chart tell us?” they reply:

“We know what everyone’s favorite color is.”
“My favorite color is red.”

“We learned English and Chinese colors.”
“My shirt is blue.” {(p. 38)
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The teacher wonders why it is so obvious to her from the graph that blue
is the favorite color, and why her students “did not seem to pull the
individual pieces of information together to share ideas about the data
seen as a whole” (p. 38).

When looking at data, most elementary students attend to character-
istics of individuals—they tend to see the trees rather than the forest.
Students make a conceptual leap when they switch from seeing data as an
amalgam of unique individuals to seeing them as an aggregate, a group
with emergent properties.

These emergent properties may not be evident in any individual
member. For example, examine the frequency distribution of the bedtimes
of a sample of third and fourth graders described in Georgia’s case 19 (see
Figure 52). The distribution is mound shaped, with lots of bedtimes at or
near 9:00. Moving away from 9:00 in either direction, we tend to find
fewer and fewer bedtimes. This mounded shape is a characteristic of the
bedtimes of the group of students as a whole and not of any of the

individual bedtimes that make up the group. You could never guess the
shape of this distribution by knowing the bedtime of a single student.

We can characterize a number of other features of this distribution: the
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Figure 52 A line plot of third and fourth graders’ bedtimes,
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to the right, that bedtimes on the hour and half-hour are more common
than on the quarter hours. Depending on the question we have about
children’s bedtimes, one or more of these group features could provide
important insights.

The challenge for students in reasoning about the aggregate is evident
in the report of Hancock, Kaput, and Goldsmith (1992). They worked in an
after-school setting with small groups of students, ages 8-15, fo design
statistical questions, collect data, and explore those data with the software
tool Tabletop. Tabletop displays each individual data point on the screen
and allows students to attach identifying labels to these data points.
Students consistently wanted to keep a label showing the identity of each
data point (e.g., the names of individual students). Worried that this was
preventing students from noticing features of the group, Hancock and
colleagues had students remove these labels. However, students showed
an uncanny ability to remember which data point belonged to which
individual and continued to draw on this information in interpreting the
data. Barbara, in her favorite-color case 7, observes a similar pattern in her
kindergarten students who “seemed to attend mostly to the names on the
chart and the information that was recorded about each person” (p. 38).

Hancock and colleagues (1992) reported that although they explicitly
encouraged students to use distributional terms such as ciuster and range to
characterize data, “students often focused on individual cases and
sometimes had difficulty looking beyond the particulars of a single case to a
generalized picture of the group” (p. 354). The researchers characterized
this individual-based analysis as resulting in blow-by-blow descriptions of
results: “This person said ‘yes’ to Question 1 and to Question 2, but this
person said ‘yes’ for Question 1 but she didn't say “yes’ for Question2...”
(p. 354). We see similar responses throughout the cases in this book,
especially in the earlier grades. For example, when Beverly {(case 9) asked
her class what they learned from their survey about who liked their
vacation, one kindergartner simply replied, “That 11 people said yes, 2
people said #no, and 8 people said something else. That makes 21.” This
child listed all the results, but made no attempt to characterize the group
as a whole (p. 48).

When students focus exclusively on information about individuals,
they are unlikely to notice characteristics of the group as a whole.
However, coming to see data as an aggregate is probably prompted in the
first place by the questions students ask about the group. Questions that
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draw attention to aggregate features include What is our class’s favorite
color? and How do our heights compare with the heights of fourth graders?
Until students ask these sorts of questions, they have no particular reason
to think about data as an aggregate or to describe group features such as
center and spread.

SECTION 6

Summarizing data with averages

Young students bring to the classroom a rich set of intuitions and expectations
about typicality. Very young students rely on the mode almost exclusively as a
descriptor of center. In later years, students use a wider variety of averages fo
summarize data. They prefer averages that are actual data values, that lie in the
center of the range, and that are close to the modal value. Using as an average a
range of values in the center of the distribution often allows them to satisfy all
these criteria. Learning to use the median and mean as meaningful indicators of
center is a challenge even for older students.

There are many types of averages: mean, median, and mode are
commonly encountered, but there are many other ways to characterize the
center of distributions. For example, economists sometimes describe
average growth rates with “geometric” means.

By second or third grade, most children have heard the word average.
Their ideas about average are based on everyday meanings that draw on
qualitative rather than quantitative notions of typicality. For example, in
her case 20, Isabelle recounts a discussion about averages that occurred in
her second-grade classroom. One student described average as “not the
best, not that great, but OK.” Other students offered similar notions,
describing average as “normal,” “regular,” or “what most people are.”
Students develop more quantitative notions of average as they begin to
use them to describe and compare sets of data

Judging from the cases, the ideal average that many students have in
mind as they reason about numerical data is an actual value in the data
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set which is also the most frequently occurring (the mode), positioned
midway between the two exiremes both in terms of value {the midrange)
and order (the median), and not too far from all the other values. {See in
particular Phoebe’s case 26, “How Tall Is a Typical Fourth Grader?”) In
symmetric, mound-shaped distributions with lots of data, one can offen
find a value that has all, or nearly all, of these properties. But with many
of the small data sets students explore, all these conditions are seldom
satisfied. When students have to start giving up criteria of ideal averages,
most of them hang tenaciously onto the mode as average. Thus, Maura
(case 12) and Georgia {case 19) describe their students as heading
“straight for the mode” (p. 64) and as considering the mode “the end-all
way to describe what's typical in a set of data” (p. 100).

In their research of student understandings of averages, Mokros and
Russell (1995) found that most students in grade 4, and even a few in
grades 6 and 8, used the mode in situations where other indicators of
center would be more representative. For example, the researchers asked
students to argue for a certain allowance based on a graph that showed a
modal allowance of $2.00 and an arithmetic average (mean) of $3.27 (the
distribution is skewed toward higher values). Most students, however,
considered only the modal value of $2.00 in making their argument. In the
words of Mokros and Russell:

Even when there was strong motivation to see the higher
numbers as more representative (e.g., they could help one
argue for a higher allowance), they did not make an argument
based on representativeness. According to these students,
$2.00 was the only number that mattered—at least mathemati-
cally—in the distribution. (p. 28)

The mean (arithmetic average) is strikingly distinct from the ideal
average that students in this casebook seem to envision. We get some
insights as to why from the research of Strauss and Bichler (1988). As part
of their study of student understandings of the mean, they described
seven fundamental properties of the mean. Of those properties, only one
is clearly among those that students deem important for an average: The
mean is located between (though not necessarily midway between) the
extreme values. Two of the properties—that it is not necessary for the.
mean to (a) équal one of the values in the data set, and (b) have any
counterpart in physical reality—are, in fact, reasons students give for
dismissing a mean, such as 2.3 children per family, as a useful average.
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Students are quite clear in voicing their objections. In Lydia’s case 25,
third-grade students tested how far they could blow a foam cylinder. One
student objected to using the mean of his two attempts as a measure of his
performance, pointing out: “I didn't get 169 [the mean value] as one of my
distances. It wouldn’t be true. It's a lie!” (p. 148). In Nadia's case 28, while
determining the average length of student names in their fifth-grade class,
one group compited a mean of 13.2, then rounded it down to 13 “because
we can’t have a point something [fractional part]” (p. 161).

That same activity in case 28 illustrates the problems that can arise
when students try to use the mean without understanding what it repre-
sents. The students’ task was to determine the “fypical” name length of
people in their class. Kayla and her partner decided they would try to
comptute an average based on the number of letters in the names on the
class list the teacher had passed out. Kayla offered: “I think we need to -
add something and then, what, multiply something?” (p. 162). After they
finally remembered that it was add and divide, Kayla summed the values
and then divided not by the total number of values (20), but by the
number of unique values (8). This gave her an average that was nearly
twice the length of the longest student name. But she registered no alarm.
The mean to her seemed to be simply the result of a computation; it did
not need to make sense.

Although the add-and-divide algorithm is relatively simple to execute,
research indicates that many students who are familiar with the algorithm
have not developed the conceptual underpinnings that allow them to
meaningfully interpret or apply the mean (Gal, Rothschild, & Wagner,
1990; Mokros & Russell, 1995; Watson & Moritz, 1999). This finding is not
limited to elementary grade students; similar results have been
documented with high school and college students (Cai, 1998; Pollatsek,
Lima, & Weli, 1981).

Researchers who have explored students” use and understanding of
means are generally recommending that we place less emphasis in the
elementary grades on teaching the mean (Mokros & Russell, 1995). In
recent elementary curricula, use of the median seems to have replaced the
mean as an objective of early statistics instruction. However, pushing
students to compute and use the median before they have a sense for why
and when it might be useful also risks promoting mechanism over
meaning. As Alice observes in her case 23, “T had focused so much of their
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prior work on finding the median that they were no longer looking at the
whole picture” {p. 132). :

An alternative notion of average that many students spontaneously
adopt is what one third grader in Lucy’s case 21 called the “middle
clump.” Fourth-grade students in Olivia’s case 3 made a line plot display
of the number of people in their families. Below the plot they wrote this
wonderful summary, which included descriptions of spread, center, and a
value of special interest: .

One person has 18 in her family. The range of the data: 4-18.
Most typical number of people in the family is 5 or 6. (p. 17)

As in this case, a middle clump is typically a cluster of values in the
heart of the distribution that includes all, or most, of the ideal features of
averages listed earlier. The chump of 5-6 in the distribution of family sizes
includes the mode, the median, and is near most of the data: two-thirds of
the cases lie in the interval 4-7. In describing a distribution, statisticians
often specify values for both center and spread. They might summarize
this distribution of family size by saying that its median is 6 and the
middle 50 percent of the data (the interquartile range) is between 6 and 9.
The middle clump potentially serves a somewhat similar purpose for
students, Jetting them express at the same time what's average and how
spread out the data are.

STupENTS' INTERPRETATIONS OF AVERAGE

To explore further how students think about and use averages, it helps to
distinguish between the various averages students use {(modes, medians,
midranges) and the meanings they give to those averages. Konoid and
Pollatsek (1999) suggest several possible ways to interpret an average,
including average as a data reducer, as a fair share, and as a typical score.
While all of these interpretations are useful in certain contexts, some infer-
pretations are more conducive than others to viewing an average as repre-
sentative of a group of data. The view of average as data reducer is that
“averaging is a way to boil down a set of numbers into one value. The
data need to be reduced because of their complexity, in particular because
of the difficulty of holding the individual values in memory” (p. 16).
Students in the elementary grades seldom employ this interpretation.
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An average is interpreted as a fair share when we imagine redistributing
a quantity among individuals so that in the end each has the same
amount. The fair share interpretation appears to be what Trudy (in
Phoebe’s case 26) was originally considering as an average of the four
heights in their group. She described getting an average by taking inches
off the taller heights and adding them to the shorter heights, “because
then you could even all the heights out.” She opted not to do this and
instead to use the add-and-divide algorithm “to just make it simple”

(p. 152). Most students are introduced to averages in contexts in which a
total is evenly redistributed. Konold and Pollastek (1999) point out,
however, that from this perspective an average is not necessarily viewed
as representative of the set of original values.

Average interpreted as a typical score includes ideas related to the
majority, mode, median, and midrange. Teachers in the cases often pose
questions to students hoping to illicit this interpretation of a “typical” or
“representative” value. The teacher posing a question such as How tall is a
typical fourth grader? is presumably thinking of a single value that is repre-
sentative of the entire group.

However, many of the students” responses suggest that they believe a
typical value is a characteristic of a particular case, or set of cases, in the
distribution. In case 22, Suzanne asked her third graders, “What would
you say is the average height of kids in our room?” One student volun-
teered, “It's me. I think I am average . . . Sam is average, and I'm average,
too” (p. 123). She did not seem to be focused on an average as a character-
istic of the group but rather on a characteristic of a person: “I'm average.”
Other students in the class gave similar responses. To claim that Sam is of
“typical” or “average” height is to characterize him, not necessarily the
group as a whole. We do not know whether these students would
consider Sam’s height to be a good characterization of the whole group.
The use of averages to describe particular individuals rather than the
group is supported by common usage, for we frequently speak of the
“average” or “typical” student.

Mokros and Russell {1995} describe some students as using a
“reasonable” approach in arriving at representative values for averages.
These students drew on both everyday experience and informal
judgments of where the data seemed centered to come up with an average
that made sense to them. For example, a fourth grader’s real-life and
mathematical sense comes through in her explanation of the distribution
of allowances she constructed to reflect an average of $1.50:

190 Working with Data

620

625

630

635

640

645

650



Well, just as they get higher, sometimes they should get lower.
And you said the typical allowance is about $1.50, so some
kids can get $1.50. And if it were $1.75 that would be pretty
cose and so would [$1.25], because that’s around it . . . If the
typical [allowance] is $1.50, you're not going to really go above
$5.00 for any kid. If I got $5.00, it would be good . . . And you
know that when you run around with a lot of kids, most of
them are like $1.50 or $1.75 or $1.25 or $1.00, something like
that. (Mokros & Russell, p. 30)

Students who used this approach relied on their intuition that averages
are roughly in the center. They often treated an average not as a precise
location but as an around-about sort of thing.

In analyzing the written reflections in notebooks kept by her third
graders, Suzanne (case 22) offered an analysis that fits remarkably well
with averages as infuitive estimates, or round-abouts:

I felt more certain than ever that an understanding of average
starts with this sense that Vic had mentioned, that it “feels
right.” I noticed that “feeling right” seemed to be associated
with a tendency toward the center of the data. When children
were pressed to explain why they had chosen a particular value
as an average, they began to analyze the data to look for
reasons, and it sometimes sounded as if they were talking about
traditional methods for finding average: median, mode, and
sometimes the midpoint of the range. However, that’s not
where they started. Rather, they started with a general idea that
the average is “typical” and in the center of the data set. (p. 126)

Assuming that learning to use averages meaningfully requires
integrating formal approaches with these more intuitive ones, many
researchers have stressed that we should encourage students o draw on
their intuition and on informal methods of summarizing data, and that in
many situations what students come up with as descriptors of average are
perfectly adequate summaries (Bakker, 1999; Cobb, 1999; Mokros &
Russell, 1995). Noss, Pozzi, and Hoyles (1999) report the use of informal -
notions of average among practicing nurses. When the nurses they
studied wanted to find a baseline systolic blood pressure for an individual
across time, they did not compute a mean or median. Among the methods
used was to visualize an imaginary line roughly in the middle of the
charted data. One nurse explained, “When I'm talking with another
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member of staff or a doctor, I'd say we’d be talking about averages in
terms of what's the middle line” (p. 15). For most purposes, it would be
unnecessary for nurses to compute exact averages when monitoring such
vital information on a minute-to-minute basis.

As we discussed earlier, an interpretation of average that appears to fit
well with students” informal ideas of average is “middle clump.” Students
in Maura’s combined third- and fourth-grade class (case 12) used a clump
to summarize the number of years students’ families had lived in town.
Fighting her desire to point them toward the median, Maura let them
proceed. They summarized the data with the statement that “almost half”
of the values were between 0 and 6. Maura reflected:

In the kids’ eyes, that first big chump clearly needed to be part
of [the summary], and the fact that it also contained that
mode at 3 didn't hurt, either. . . . It seemed to carry some
significance for them, and as I thought about it, I realized that
it did for me also. This was a meaningful statement to make
about our data. . . . (p. 67)

Cobb (1999) describes the way the seventh graders in a teaching exper-
iment began reasoning about data sets as wholes once they were able to
perceive and talk about the “hills” in the line plots they were examining.
Clusters, hills, or middle clumps may not only serve as descriptors that
are good enough for the task at hand; they may also give students
experience working with ideas that will help them construct meaningful
interpretations of measures of typicality such as means and medians.

SECTLON 7

Comparing groups

Questions about if and how two groups differ motivate students to look at
distributions in different ways, focusing on features of the group as a whole
rather than individuals in the group. However, many students who seem to
readily use averages to describe a single group do not use them to compare
groups. Using an average of one group to compare it with another requires
viewing that average as representative of the whole group.
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Throughout chapter 5 of this casebook, we find evidence that although
comparison tasks are challenging to students, these tasks seem to
meotivate students to begin focusing on the data as aggregate. Reflecting
on the project comparing bedtimes across several grade levels, Georgia
{case 19) was pleased that her third-grade students had

arrived at a place where they were able to describe the shape
of the data and to look at the features that it made most sense
to examine. And yet I'm not sure exactly how they got there.
This was the first time that [ was asking the class to compare
data sets. Is there something in setting up a comparison task
that makes it inherently more interesting? Do more features
jump out at you when you're comparing because the presence
of a feature on one graph shows up the absence of that same
feature on another graph? (p. 109}

As to why comparison problems pose a challenge to many students,
‘Maura noted in her case 27 that comparing groups can be

a little puzzling to kids at this age [grades 3 and 4]—how can you
talk about the group, after all, as something separate from the
individuals in the group? (pp. 154~155)

As long as students are working with single groups, it is not clear why
they would need to summarize the data with statistical measures like
averages. But when faced with the problem of comparing groups, they
might see averages as potentially useful. Research has demonstrated,
however, that students do not initially view averages as useful tools for
comparing groups, presumably because they have not yet adopted a view
of data as an aggregate and therefore do not see averages as ways to
characterize groups. This includes students who appear to know how to
compute means (Hancock, Kaput, & Goldsmith, 1992; Watson & Moritz,
1999; Jones, Thornton, Langrail, Mooney, Perry, & Putt, 1999).

Gal, Rothschild, and Wagner (1990) gave students in grades 3, 6, and 9
several pairs of line plots that portrayed data from one of two contexts. In
one cover story, the plots showed the results of a frog-leaping contest
between two teams, with X’s on the graphs representing the distances
jumped by individual frogs of each team. The students’ task was to use
the data to decide which team won the contest. Only half of the sixth- and
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ninth-grade students who knew how to compute means went on to use
means to compare the two groups. 755

This finding is not limited to the use of means. Bright and Friel (1998)
questioned eighth-grade students about a stem-and-leaf plot that showed
the heights of 28 fifth-grade students. They then showed them a stem-
and-leaf plot that included these data along with the heights of 23
basketball players, as seen in Figure 53. Asked about the “typical height” 760
in the single distribution of the fifth grade students, two of four students
who were interviewed specified a middle clump (e.g., 147-151 cm). But
shown the plot with both distributions, these students could not gener-
alize their method to determine “How much taller are basketball players
than students?” When they did make comparisons, students compared 765
selected individuals from each group (e.g., pointed out that the tallest
student was shorter than the shortest basketball player). In the words of
Bright and Friel, some of these students could

describe a “typical” student or basketball player, but they did
not make the inference that the “typical difference” in heights 770
could be represented by the “difference in typicals.” (p. 80)
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Figure 53 Heights of students (top} and basketball players {shown in bold}. From Bright & Friel,
1998, p. 81. Reprinted with permission of the author and publisher.
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Konold, Pollatsek, Well, and Gagnon (1997) report similar results from
their study of high school seniors who had just completed a yearlong
course in probability and statistics. During the course, the students had
frequently used medians and means fo compare groups. But during a
post-course interview, free to use whatever methods they chose, they
seldom used medians, means, or percentages when comparing two
groups. These students made most of their decisions about group
difference by comparing the numbers of individuals in each group within
narrow slices of the range. For example, “More of the A students have
curfews than don’t. Therefore, students with curfews get better grades
than those without curfews.”

Similarly, in Maura’s case 27 we see students using slices of the data to
compare the heights of two groups. One student argues that the fourth
graders are taller than the third graders because “the third grade line plot
has 5 X's at 51. The fourth grade has none at 517 (p. 155). While this
method of comparison gives some useful information when the groups
are of equal size, it can be quite misleading when the groups are of
different sizes (e.g., in the curfew example, suppose that there were twice
as many students overall with curfews as without them).

Cobb (1999) and colleagues report similar findings from their middle
school teaching experiment. They had originally designed their curricula
to support students in using medians to compare groups. However, they
found that the students rarely used medians for this purpose but rather
tended to compare slices across the groups as described above. Cobb
{1999) describes a critical episode during an investigation of traffic speed
before and after a police speed trap. During a group discussion, one
student compared center “hills” of the two distributions to argue that the
speed trap successfully slowed traffic:

If vou look at the graphs and look at them like hills, then for
the before group, the speeds are spread out and more than 55,
and if you look at the after graph, then more people are
bunched up close to the speed limit [50 mph], which means
that the majority of the people slowed down close fo the
speed limit. (p. 19) '

This was the first occasion during class discussion that a student had
“described a data set in global, qualitative terms by referring to its shape”
(p. 19). Other students adopted this terminology, and comparison of
“hills” became a standard way to describe and compare groups. As they
progressed to comparing data sets of different sizes, they began talking
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not just about hill location, but about the number of cases in the hills
relative to group size. We see similar forms of reasoning in Georgia’s class
(case 19} in which students used middle clumps (or modes) to describe an
increasing trend in bedtimes across the grades.

SECTION 8

Relating data back to the real situation

During all phases of data analysis, it is critical that students not lose sight of the
questions they are pursuing and of the real-world events from which the data
cotne. These connections are easier to maintain when students work with data
from familiar contexts and use representations they understand.

In section 2 we stressed the importance in data analysis of seeing data as
related to, but not identical to, real events—as models of those events. It is
equally critical that, once students have organized and represented data,
they interpret the data by relating them back to the real-world observa-
tions and the questions that motivated the investigation in the first place.

Cobb (1999) reports that the seventh-grade students interviewed before
instruction often viewed working with data as “doing something with the
numbers” (p. 12). In summarizing student responses, Cobb concludes that
it is “doubtful whether most of the students were actually analyzing data,
in that the numbers they manipulated did not appear to signify measures
of attributes of a situation about which a decision was to be made” (p. 13).
Early in the subsequent teaching experiment, the researchers saw the
same tendency as students began reasoning about a set of data concerning
the lasting power of two brands of batteries. Students were interpreting a
graph showing hours of use of “Always Ready” and “Tough Cell”
batteries (see Figure 54).

The two brands of batteries appeared as green and pink bars on the
computer screen the students were viewing. In Figure 54, as well as in the
class dialogue that follows, we have changed these colors to light and
dark gray. During the first day they worked with this display, the students
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referred mostly to numbers and colors. Noticing this, the teacher began to 835
encourage them to talk instead about batteries.

Casgy: And I was saying, see like there’s 7 [light gray] that last
longer. -

TeacHErR:  OK, the [light gray] are the Always Ready, so let's make
sure we keep up with which is which. OK? 840

Casey: OK, the Always Ready are more consistent with the 7 right
there, and then 7 of the Tough ones are like further back, I
was just saying ‘cause like 7 out of 10 of the [light gray]
were the longest, and like . ..

Kan: Good point. 845

JANICE: I understand.

TeACHER: You understand? OK, Janice, I'm not sure I do, so could
you say it for me?

¢ 10 20 30 4 50 e 70 8 90 100 10 120 130
Hours of battery life

Figure 54 Case-value plot of hours of use of “Always Ready” (light gray) and “Tough Cell” {dark
gray) batteries. From Cobb, 1999, p. 14. Adapted with permission of the author and publisher.
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JANICE: She’s saying that out of 10 of the batteries that lasted the
longest, 7 of them are [light gray], and that’s the most 850
number, so the Always Ready batteries are better because
more of those batteries lasted longer. (pp. 14-15)

Cobb (1999) concludes that a critical step for these students in learning
to reason about data was coming to expect that the statements and claims
regarding various plots should extend beyond mere numbers by making 855
reference to a specific real-world situation.

In most of the activities described in the cases, students were collecting
their own data. Yet we still frequently see students talking about numbers
only. This problem recurs as students begin learning how to describe
general features of the data, when they can again lose sight of what those | g0
general features tell them about the real situation. For example, Alice’s
third-grade students (case 23) wrote summaries describing a line plot of
daily temperatures they had collected in February. One student wrote:

At first very spread out. Then it gets more bunched up. (p. 134)

Many of the summaries, like this one, did not connect the data to the 865
context. Concerning the student who wrote this summary, the teacher
wondered:

Did he know it wasn't just a clump of X's, but a represen-
tation of a real thing, which was indicating a predominance of
a certain temperature on the high side of the range of temper- 870
atures for the month? . . . I wondered how to help him see
that what he noticed about how the data looked implied
something significant about what the temperature was like in
February. (p. 134)

Feldman, Konoeld, and Coulter {(2000) cite several examples from 875
various data-intensive science projects, describing what happens when
students are given data about phenomena far removed from their
experience and with no clear questions in mind. They conclude that

Nearly every problem associated with . . . keeping them
engaged in analysis ultimately stems from students not 880
making, or losing, the connection between the data they have
and a real-world question. This being the case, the solution to
most of the problems can be found in focusing on how to
make and maintain these connections. (p. 127)
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CoNCLUSION

The research and the cases we have presented call attention to the need
for students to work with real data throughout the elementary and
middle grades. Understanding data representation and analysis involves
many complex issues, from sorting through what different numbers mean
on a graph to choosing appropriate measures to summarize and compare
groups. Through multiple experiences with a variety of data sets,
students begin to develop the tools and concepts they need to use data
themselves and to interpret the data they will encounter throughout life.
With these experiences and with effective questioning from a reflective
teacher, children construct their own “big ideas” of data. Some of the
conversations you have in your own classroom may be similar to those
you have read about in the cases and in the research discussed in this
essay; some may bring up ideas quite different from those you've encoun-
tered here. As you continue to develop your own understanding of data
analysis, you will also continue to develop an ear and mind more attuned
to the ideas of your students and will be able to make informed choices
about supporting and challenging them in their work with data.
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