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Clifford Konoid 

Representing Probabilities with 

Pipe Diagrams 

P 

Many 
students 

are confused 
about how 

to calculate 
a probability 

robability is a notoriously difficult concept. Even 
after much instruction, many students remain con 
fused both about methods used to calculate a proba 
bility and about its meaning (Konoid 1991). In this 

article, I shall describe a modified version of the 
tree diagram that many of my students at both the 

high school and college levels have found helpful in 

making probabilities more meaningful. I refer to 
these representations as pipe diagrams. Although 

most readers are probably familiar with tree dia 

grams, I review a few of their basic features before 

introducing pipe diagrams and discussing their 
educational advantages. 

A college textbook on finite mathematics by 
Kemeny, Snell, and Thompson (1956) includes the 
earliest example of using tree diagrams to compute 
probabilities that I could find. The authors first 
describe the tree diagram as a "useful tool for ana 

lyzing logical possibilities,, (p. 25) and then explicit 
ly use tree diagrams to define a measure of, and 

compute probabilities associated with, series of 

independent events (pp. 140-42). 

Figure 1 is a tree diagram representing the four 

possible outcomes of flipping a coin twice. On the 
first flip, the coin can land either heads, H, or tails, 
T. These possibilities are represented by the two 
branches on the left in figure 1, one leading to H, 
the other to T. The probability of each occurrence, 

1/2 in this example, is traditionally written next to 
the branches, as shown. Regardless of what hap 
pens on the first flip, it is possible to get either or 

on the second flip. This outcome is represented by 
splitting each original branch into two branches, one 

labeled and the other, T. Because the outcome of 
the second flip is independent of the outcome of the 
first flip, the branches in the second level are still 

tagged with probability 1/2. Thus, the 1/2 on the 
top branch is the value of P(H/H), the conditional 

probability of getting given an H on the first flip. 
The completed tree diagram has four unique paths 
through the branching system. Each path corre 

sponds to one of the four possible events: HH, HT, 
, and TT. 

Probabilities of a variety of events can be com 

puted using the tree diagram. For example, the 

simplest way to compute P(HH), the joint probabili 
ty of getting H on both flips, is to notice that 
because and are equally likely for each flip, the 
four paths in the tree diagram must each have the 
same probability, 1/4. However, students familiar 

only with this method may not be able to compute 
joint probabilities when they cannot readily con 
struct the tree diagram?for example, the probabil 
ity of twenty heads in a row?or when the elemen 

tary outcomes are not equally probable?for 
example, the probability of two Hs with a coin 
"loaded" such that P(H) equals 0.6. In the situation 
of the biased coin, the four possible events are no 

longer equally likely, and thus determining the 

probability of two Hs as a fraction of the total num 

ber of paths would be inappropriate. 
The more general method for computing a joint 

probability from a tree diagram is to multiply the 

probabilities of the individual outcomes. Thus, 
P(HH) is the probability of taking the first H-branch, 
1/2, multiplied by the conditional probability of 
taking the second -branch, or (1/2) times (1/2). 

Clifford Konoid teaches at the University of Massachu 
setts, Amherst, MA 01003, and is also codirector of the 

Math Center at TERC, Cambridge, MA 02140. He has 
been developing probability and data-analysis curricula 
and software with funding from the National Science 
Foundation. 
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Students using this method can compute joint 

probabilities without generating the entire tree dia 

gram and for situations in which the elementary 
outcomes are not equally likely. However, they fre 

quently do not understand why they are multiply 
ing the probabilities. 

One reason for students' confusion about the 

multiplication of probabilities is that, conceptually, 
probabilities are not multiplied. Instead, they are 

divided, or, to use a term Confrey (1990) prefers, 
they are "split." Tree diagrams tend to focus atten 

tion on the multiplication of possible events as sub 

sequent levels of events are added rather than on 

the splitting of probability among these events. In 

fact, probabilities are not graphically depicted in 
tree diagrams; they appear only as numeric labels 
on the branches. The pipe diagram was devised as 
a way to represent graphically not only the collec 
tion of possible events?the sample space?but 
also the probabilities of those events. 

THE PIPE DIAGRAM 

Figure 2 is the pipe diagram for the same situation 

involving two coin flips. Two differences between it 
and the tree diagram are obvious. First, the branch 

es, or pipes in this new metaphor, are tagged with 

joint rather than conditional probabilities. Second, 
the values of these joint probabilities are graphi 
cally depicted as pipe widths. As the name implies, 
the diagram is meant to suggest a system of pipes 
through which water flows. An event is represented 
by a particular pipe in the system, and the proba 
bility of an event is equivalent to the fraction of the 
total amount of water entering at the left that flows 
into a particular section of the pipe. Students are 

instructed in this example to think of P(HH) as the 

fraction of water that would flow into, or out of, the 

top pipe. 
In the pipe diagram, the joint probabilities in 

each column sum to 1, which is a concrete represen 
tation that the probabilities of all mutually exclu 
sive outcomes of some random event sum to 1. This 
fact makes sense to students in terms of the pipe 
metaphor because all the water from one column or 

stack is split among the pipes in the next column 
and is therefore always equal to the original 
amount. By contrast, the sum of the accompanying 
conditional probabilities in all but the first column 
of the tree diagram is greater than 1. 

Using the tree diagram to solve the coin problem, 
students compute P(HH) by first drawing the entire 

diagram and then multiplying the conditional prob 
abilities of each individual outcome. The pipe dia 

gram requires the student to compute joint proba 
bilities as each additional level is added. 

Experience suggests that although students may be 
slow to understand how multiplication by rational 
numbers gets the job done, they are quick to see, 
for example, that in computing P(HH), the proba 
bility of the prior, or parent, event, H, must be 

split; half goes to HT, leaving the other half to HH. 
Thus they can determine the relative size of the 

pipe associated with HH more quickly than they 
can determine the appropriate probability. Much of 
the instructive power of the pipe diagram comes 

from the fact that while constructing each part of it, 
the student is given a concrete reference not only 
for the value of the probability but also for the gen 

erating mathematical operation (splitting). 
The differences between pipe and tree diagrams 

become more obvious with a problem in which the 

elementary events are not equally likely. 

The basketball problem 
A basketball player is about to shoot two free 
throws that may win the game. Over the season, 
she has made 2/3 of her free throws. What is the 

probability that she makes both free throws? 

To solve this problem given only this information, 
students must assume that the probability of mak 

ing the second shot is not affected by the outcome of 
the first shot. Surprisingly, data obtained from pro 
fessional players suggest that this assumption is 
true (Gilovich, Vallone, and Tversky 1985). 

The pipe and tree diagrams for this problem are 

shown in figure 3. In the pipe diagram, the upper 

pipe of the first division is labeled H (Hit) and the 
lower pipe, M (Miss). The leftmost M pipe is half 
the width of the corresponding H pipe, reflecting 
the differences in probabilities between the two 
events. Two-thirds of the "water" flows through the 
first H pipe, and the rest, 1/3, flows through the 
first M pipe. At the second split, 2/3 of the water in 

Pipe 
diagrams 

give students 
a concrete 

reference 
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The 
relative 

sizes of the 
joint 

probabilities 
are obvious 

Comparison of pipe and tree diagrams for the 
basketball problem 

the first H pipe, or 4/9 of the original amount, con 
tinues on through a second column- pipe. This 

pipe is associated with the probability of making 
both shots. The relative sizes of the various joint 
probabilities?HH is twice the thickness of HM? 
are obvious in the pipe diagram, whereas the tree 

diagram gives no graphical clue to these relations. 
As the number of columns and elementary 

events increases, it becomes increasingly difficult to 
maintain the appropriate pipe widths. For this rea 

son, students can be asked to determine probabili 

Fig.4 
Pipe diagram for the pregnancy problem (P = pregnant, = not pregnant) 

ties of various complex events by extrapolating 
from a simpler pipe diagram. For example, imagine 
in a typical game that the player mentioned in the 

foregoing problem attempts ten free throws. What 
is the probability that she makes all ten? By exam 

ining the pipe diagram for two shots, students can 
see that for each additional shot, the pipe at the top 
will be reduced in size by a factor of 2/3. After a few 

iterations, many students can formalize the pattern 
using exponents to compute the probability of ten 
consecutive hits ((2/3)10 ? 0.017). Getting students 
to perform these mental extensions should be one of 
the primary objectives when using either pipe or 
tree diagrams because neither diagram can repre 
sent problems with other than small sample spaces. 

Another solution to dealing with multilevel sam 

ple spaces is to have students depict only the event 
of interest by "pruning" the diagram. They could 

compute the probability of making all ten shots by 
drawing only two pipes at each level, one corre 

sponding to making the shot, the other, to missing. 
A pipe associated with a missed shot would not be 

split in the next level, since it is now part of a 
series of shots that includes at least one miss. 

Pruning is a more natural way to represent the 
"wait time" problem presented in the next section. 

The pregnancy problem 
The Johnsons have decided to have a baby. 
Unfortunately, they have jobs in different cities 
and are together only on Saturdays. They want 
to know about how long it will take them to con 
ceive given the current situation. Through a little 

research, they discover that for fertile couples who 
have intercourse once a week, the probability 
that they conceive in a particular month is 0.17. 

Only the upper "not pregnant" pipe in figure 4 
continues splitting because when pregnancy occurs, 
the "experiment" ends. The probabilities shown on 
the diagram are, again, joint probabilities. For 

example, the second column shows the joint proba 
bilities of (1) not getting pregnant during either the 
first or second month (0.69) and (2) not getting 
pregnant in the first month and getting pregnant in 
the second (0.14). 

The following questions can be asked after stu 
dents have constructed this pipe diagram. The cor 
rect answers are shown in parentheses. 

1. Use the diagram to determine the probabilities 
that Ms. Johnson is not pregnant after (a) the 
first month, (b) the second month,..., (f) the 
sixth month. (These probabilities are shown in 
the upper segment of the pipe diagram.) 

2. What is the probability that Ms. Johnson is preg 
nant by the end of the third month? (0.17 + 
0.14 + 0.12 = 0.43.) 
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3. If Ms. Johnson is still not pregnant after the 
third month, what is the probability of her 

becoming pregnant in the fourth month? (0.17) 

4. Without actually extending the pipe diagram, 
calculate the probability that Ms. Johnson is still 
not pregnant after one year. ((0.83)12? 0.11.) 

Many students will assume that the reason the 

probability of being pregnant after six months is so 
much larger than after one month, 0.68 compared 
with 0.17, is that the probability of getting preg 
nant increases with each failure. Question 3, how 

ever, stresses that given that Ms. Johnson has not 

yet conceived, the probability of getting pregnant in 
the coming month remains constant at 0.17. Visual 

ly, the lower pipes that split off from the top section 
are always of the same width relative to the upper 
section to the immediate left. 

Question 4 asks students to imagine extending 
the diagram to determine a probability of an event 
that is not easily depicted graphically. In the 

process, some students learn to connect the physi 
cal representation of probability to a mathematical 

one, such as (0.83)12. 
I have used the pregnancy problem successfully 

on several occasions with older adolescents at 

SummerMath, a six-week residential mathematics 

program for high school-aged young women spon 
sored by Mount Holyoke College, and in a course 

taught by Al Gagnon at Holyoke High School in 
Massachusetts. I have never encountered an objec 
tion from either the students or their families. I 

present the problem matter-of-factly with a sense of 
confidence that students will discuss the problem 
maturely. They show considerably more interest in 

thinking about this situation than about the basket 
ball problem, for example. Certainly, that the prob 
lem has for them obvious present and future impli 
cations and that the value of 17 percent is based on 
actual research (Barrett and Marshall 1969) have a 
lot to do with their motivation. 

WATER-PIPE PROBLEMS 
Before formally drawing an analogy between proba 
bility and water in a section of a pipe system, I give 
students problems similar to those shown in figure 
5. Notice that the accompanying questions, with 
which students have little difficulty, are structural 

ly comparable to typical probability computations. 
Again, questions are included to help students 
move from computations based on visual represen 
tation of the dividing process to formal techniques. 
Ideally, the derived expression (1/2)" in question 2c 
of figure 5 becomes for the student not a static 

expression into which a value of is plugged but a 

representation of the dynamic process of halving, 
which begins, in this example, at = 1 and can con 
tinue indefinitely. 

Six towns are served by the water system shown in the diagram. 
The pipe carries water from a large reservoir on the left to the six 
towns. Each time the pipe splits, it splits into two sections of 

equal width. 

1. Determine the fraction of the water piped from the reservoir 
that goes to each town. 

2. Future plans call for extending the pipe system to include sev 
eral more towns being built farther down the pipe line. 

a) If the system is divided in the same way that it has been to 
this point, what fraction of the total water coming from the 
reservoir will town 7 receive? 

b) What fraction will go to town 12? 
c) Let stand for the number of a town. Note that a town's num 

ber tells you how many times the pipe has been divided 
before reaching that town. Write a mathematical expression, 
or rule, that would allow you to calculate the fraction of the 
water that town would receive. 

Fig. 5 

Water-pipe problem 

Readers may have noted that an actual water 

pipe half the diameter of another pipe would carry 
only one-fourth, not one-half, the volume of water. 

Pipe diagrams should therefore be regarded as two 
dimensional pipes?plumbing in Flatland?or as 
cross sections of rectangular pipes. Perhaps unfor 

tunately, I have never had a student point out the 
limits of the metaphor. Also, some costs are associ 
ated with using pipe diagrams: they require more 

space on the page than do tree diagrams, take 
about four times as long to draw, and require more 
time in early instruction to remind students to take 
the widths seriously. I tell my students that when 

they draw pipe diagrams, their pipe widths need 
remain only relatively accurate. Someone looking 
at the diagram should be able to tell that one event 
is more probable than another, but not necessarily 
how much more probable. 

INTERPRETING PROBABILITIES 
In addition to helping students understand why 
and when probabilities are multiplied, pipe dia 

grams may foster a better understanding of what a 

probability is. Research suggests that many college 
students hold to a general view of probability de 
scribed by Konoid (1989) as an "outcome approach." 
One manifestation of this outcome approach is that 

Students 

learn to 
connect 

physical and 
mathematical 

representa 

Hons 
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when asked about the probability of some event, 
many students think that they are being asked to 

predict whether that event will occur rather than 
to quantify how likely, or often, it will occur. For 

example, these students interpret the forecast "70 

percent chance of rain" to mean that "it will rain." 
When told that no rain fell on that forecasted day, 
these students reply that the forecast of 70 percent 
rain was incorrect. Probability values in the out 
come approach are turned into definite predictions 
by judging whether they are sufficiently close to the 
anchor values of 100 percent ("yes") and 0 percent 
("no"). In the weather example, 70 percent is 

regarded by many students as close enough to 100 

percent to warrant the assertion that "it will rain." 
Given this frame of reference, it then makes sense 

why many students regard probabilities close to 50 

percent as indications of ignorance, as synonymous 
with the statement "I don't know." For example, 
when asked to interpret the meaning of the forecast 
"50 percent chance of rain," one student in Konold's 

(1989) study replied in this manner: 

I'd kind of think that was strange?that he didn't 

really know what he was talking about, because only 
50-50?"it might rain or it might be sunny, I really 
don't know." 

In a more recent study, Konoid et al. (1993) found 
that the percent of undergraduate students holding 
this outcome-oriented view was unrelated to earlier 
instruction in statistics. This situation suggests 
that students can learn to compute various proba 
bilities and still have a poor idea of what a proba 
bility is. 

The way in which tree diagrams are typically 
described may inadvertently support this outcome 
oriented reasoning. Teachers tend to talk about the 
nodes of the tree diagram as either-or decision 

points: "If the coin lands tails up on the first flip, 
what might happen on the second flip?" Unfortu 

nately, this type of description fits well with some 
students' belief that their task is to predict which 

path will be taken rather than to determine proba 
bilities associated with those paths. The pipe dia 

gram may supply the basis for a more viable under 

standing by building on the analogy of water-filled 

pipes. Using the diagram is not a matter of decid 

ing which way the water will flow, since it distrib 
utes itself throughout the system, but of figuring 
out how much is in various parts. Similarly, proba 
bility is not about predicting whether a particular 
event will occur but about determining how the 

probability is distributed over the possible events. 
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