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In this chapter, I describe ideas underlying the design of a software tool we
developed for middle school students (Konold & Miller, 2005). The tool—
TinkerPlots—allows students to organize data to help them see patterns and
trends in data much in the spirit of visualization tools such as Data Desk
(DataDescription, Inc.). But we also intend teachers and curriculum design-
ers 1o use it to help students build solid conceptual understandings of what
statistics are and how we can use them.

Designers of educational software tools inevitably struggle with the issue
of complexity. In general, a simple tool will minimize the time needed to
learn it at the expense of range of applications. On the other hand, designing
¢ tool to handle a wide range of applications risks overwhelming students. I
contrast the decisions we made regarding complexity when we developed
DataScope 15 years ago with those we recently made in designing
TinkerPlots, and describe how our more recent tack has served to increase stu-
lent engagement at the same time it helps them see critical connections
zmong display types. More generally, I suggest that in the attempt to avoid
sverwhelming students, too many educational environments managed instead
0 underwhelm them and thus serve to stifle rather than foster learning.

Before looking at the issue of complexity, I describe more general considera-
“ons that influenced our decisions about the basic nature of TinkerPlots. These
nclude views about (1) what statistics is and where the practice of statistics might
~< headed and (2) how to approach designing for student learning.
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OVERARCHING DESIGN CONSIDERATIONS

The Growing Role of Statistics

How can we teach statistics so that students better understand it? This was the
primary question that 25 years ago motivated me and my colleagues to begin
researching the statistical reasoning of undergraduate students. Qur assump-
tion was that if we could better understand students’ intuitive beliefs, we
could design more effective instruction. We researched student reasoning
regarding concepts fundamental to the introductory statistics course. These
included the concept of probability (Konold, 1989; Konold, Pollatsek, Well,
Lohmeier, & Lipson, 1993; randomness (Falk & Konold, 1997); sampling
(Pollatsek, Konold, Well, & Lima, 1984); and the Law of Large Numbers
(Well, Pollatsek, & Boyce, 1990).

We find ourselves today concerned with a different set of questions. These
include:

e What are the core ideas in statistics and data analysis?
What are the statistical capabilities that today’s citizens need, and what
will they need 25 years from now?

e How do we start early in young peoples’ lives to develop these capa-
bilities?

Three interrelated developments are largely responsible, I believe, for this
change of research focus. First, there has been an expansion of our view of
statistical practice, a difference often signaled by use of the term data analy-
sis in place of statistics. Much of the credit for enlarging our vision of how to
analyze data goes to John Tukey. His 1977 book, Exploratory Data Analysis.
in which he advocated that we look past the ends of our inferential noses, was
in many ways ahead of its time.

Second, the United States, as have many other countries, has committed
itself to introducing data analysis to students beginning as early as the first
grade (NCTM, 2000). The reason often given for starting data analysis early
in the curriculum is the ubiquity of data and chance in our everyday and pro-
fessional lives. The objective has become not to teach statistics to a few but
to build a data literate citizenry. Given that we never really figured out how to
teach statistics well to college undergraduates, this is a daunting, if laudable.
undertaking.

Finally, the enhanced capabilities and widespread availability of the com-
puter has spawned a new set of tools and techniques for detecting patterns in
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massive data sets. These methods, sometimes referred to as “data visualization” and
“data mining.” take advantage of what our eyes (or ears, Flowers & Hauer, 1992)
do exceptionally well. The parody of the statistician as a “number cruncher” is
dated. A more fitting term for the modern version might be plot wringer.

Because of the ubiquity of data and their critical role across multiple disci-
plines and institutions, formally trained statisticians are now a thin sliver of
those who work with data. Jim Landwehr, who was a candidate for the 2003
President-Elect of the American Statistical Association, made this observation
in his ballot statement (http://www.intelliscaninc.com/amstat_90.htm#s02):

I believe that a statistical problem-solving approach is an important, ingrained
component of today’s economy and society and will continue to thrive. It is not
so obvious to me, however, that the same could be said of “core statistics™ as a
discipline or “core statisticians’ as employees. With our diversity of topics and
interests and with their importance to society, we statisticians face the dangers
of fragmentation. Statistics can and will be done by people with primary train-
ing in other disciplines and with job titles that don’t sound anything like “sta-
tistician.” This is fine and we could not stop it even if we wanted to.

The growing stores of data along with the perception that we now have tools
that permit us to efficiently “mine” them is helping to shape a heightened
sense of accountability. As patients we view it as our right and obligation to
examine the long-term performance of hospitals and individual doctors before
submitting ourselves to their care. We expect that their recommendations are
based on looking at past success rates of therapies and procedures. And this is
not the case just in medicine. We expect nearly all our institutions—govern-
ment, education, financial, business—to monitor and improve their perfor-
mance using data. Where data exist, none of us are immune. Among the
reasons Red Sox officials gave for firing manager Gracy Little at the end of the
2003 baseball season was his “unwillingness to rely on statistical analysis in
making managerial decisions” (Thamel, 2003, p. 3). Public education will
likely slip the noose of the No Child Left Behind legislation, but not without
putting in place a more reasonable set of expectations and ways of objectively
monitoring them. The information age is fast spawning the age of account-
ability.

It is critical that we consider these trends as we design data analysis tools
and curricula for students. Our current efforts at teaching young students
about data and chance are still overly influenced by statistical methods and
applications of 30 or 50 years ago. This is not to suggest that we lay all bets
on guesses about where the field might be headed. But we do need to imagine
what skills today’s students will likely be using 10 and 25 years from now and
for what purposes. At the same time, we need to work harder to understand
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what the core ideas in statistics are and how to recognize them and their
precursors in the reasoning of the 10-year-old. We can assume that these
underlying concepts (e.g., covariation and density) will be evolving more
slowly than the various methods we might use to think about or represent
them (e.g., scatter-plot displays and histograms).

Bottom-Up Versus Top-Down Development

During the past few years, mathematics and science educators have been
investigating how students reason about mathematical and scientific concepts
and applying what they learn to improve education. This has led to methods of
bottom-up instructional design, which takes into account not only where we
want students to end up, but also where they are coming from. Earlier
approaches, in contrast, emphasized a top-down approach in which the
college-level course—taken as the ultimate goal—was progressively stripped
down for lower grades. Figures 11.1, 11.2, 11.3, and 11.4 are a characteriza-
tion of how statistics curriculum materials and tools have been produced and
how, in contrast, we approached the design of TinkerPlots.

When they began several years ago to design statistics courses for the high
school, educators patterned the curricula largely after the introductory college
course in statistics, as if they were dropping a short rope down from the col-
lege level to students in high school (see Fig. 11.1). When, more recently.
educators began developing statistics units for middle and elementary school
students, they continued to lower the rope (Fig. 11.2), basically by removing
from the college curricula the concepts and skills they considered too difficult
for younger students. The objectives and content at a particular level are thus
whatever was left over after subjecting the college course to this subtractive
process. So grades 3-5 get line graphs and medians, grades 6-8 get scatter-
plots and means, and grades 9—12 get regression lines and sampling distribu-
tions (see National Council of Teachers of Mathematics, 2000).

Designers of statistics software tools for young students have generally
followed the same top-down approach, developing software packages that are
fundamentally stripped-down professional tools (Biehler, 1997, p. 169).
These programs provide a subset of conventional graph types and are simpler
than professional tools only in that they have fewer, and more basic, options.
More recently, Cobb, Gravemeijer, and their colleagues at Vanderbilt
University and the Freudenthal Institute, have taken a different approach in
designing the Mini Tools for use in the middle school. They incorporated into
the Mini Tools a small set of graph types—case-value plots, stacked dot-plots.
and scatter-plots. And in large part they decided what to include in the tool
by building from a particular theory of mathematics learning and on
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Figure 11.1 A top-down approach to developing tools and curricula for high
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Figure 11.2 The top-down approach extended to development of materials for
the lower grades.
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research about student reasoning (Bakker, 2002; Cobb, 1999; Cobb,
McClain, & Gravemeijer, 2003). In this way, their instructional units and
accompanying software take into account not only where instruction should
be headed; working from the bottom up, they also attempt to build on how
students understand data and how they are prone, before instruction. to use
data to support or formulate conjectures (Fig. 11.3).

In designing TinkerPlots, we undertook a more radical approach. First we
assumed that we did not know quite where K—12 curricula should be headed
and that, in any case, there were likely to be many ways for students to get
there, a multiplicity of student understandings from which we could produc-
tively build up (Fig. 11.4). What held us in check, however, was an additional
objective of designing software that was useful to curriculum designers writ-
ing materials that meet the NCTM Standards (2000) on data analysis. As I
illustrate later, these two objectives pulled us at times in opposite directions,
generating a set of tensions some of which were productive.

THE PROBLEM OF COMPLEXITY

Put five statistics educators in a room with the objective of specifying what
should be in a data analysis tool intended for young students. The list of
essential capabilities they generate is guaranteed to quickly grow to an alarm-
ing length. And no matter how many capabilities are built into a tool, teach-
ers and curriculum developers—even students—will still find things they
want to do, but cannot. If as a software developer you try to be helpful by
including most of what everyone wants in a tool, it becomes so bloated that
users then complain they cannot find what they want. Thus when it comes to
the question of whether to include lots of features in a software tool, it’s gen-
erally “damned if you do, damned if you don’t.”

Biehler (1997) refers to this as the complexity-of-tool problem. He suggests
that one approach to addressing it is to design tools that become more sophis-
ticated as the user gains expertise. This is just what successful computer
games manage to do through a number of means (Gee, 2003), but it is hard to
imagine implementing this in an educational software tool. The Mini Tools
comprise three separate applications that the developers introduce in a speci-
fied order according to their understanding of how rudimentary skills in data
analysis might develop over instruction. Perhaps the suite of Mini Tools is a
simple example of the kind of evolving software Biehler had in mind.

In developing DataScope 15 years ago, we took a different approach to the
complexity problem (Konold, 1995; Konold & Miller, 1994). DataScope is
data-analysis software intended for students aged 14-17. We conceived of it
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to hook up in the middle.

Figure 11.4 A diversified bottom-up approach aimed at a moving or ambiguous
target.
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as a basic set of tools that would allow students to investigate multivariate
data sets in the spirit of Exploratory Data Analysis (Tukey, 1977). To combat
the complexity problem, we implemented only five basic representations:
histograms (and bar graphs), box-plots, scatter-plots, one and two-way tables
of frequencies, and tables of descriptive statistics. Our hope was that by lim-
iting student choices, more instructional time could be focused on learning
underlying concepts and data inquiry skills.

In many ways, we accomplished our goal with DataScope. Students took
relatively little time to learn to use it, and it proved sufficiently general to
allow them to flexibly explore multivariate data (Konold, 1995). However,
one persistent pattern of student use troubled us. To explore a particular ques-
tion, students would often select the relevant variables and then choose from
the menus one of the five display options, often with only a vague idea of
what the option they selected would produce. If that display did not seem use-
ful, they would try another, and another, until they found a display that
seemed to suit their purposes. If they were preparing an assignment or report,
many students generated and printed out every possible display. There are
undoubtedly several reasons for this behavior; Biehler (1998) reports similar
tendencies among older students using software with considerably more
options. However, it seemed clear that the limited number of displays in
DataScope explained in part this trial-and-error approach, as there was little
cost in always trying everything. Had this behavior been prevalent only
among novice users, it would have not been of much concern. But, it persisted
as students gained experience.

When we were field-testing DataScope, | had a fantasy that students would
want to work with it outside of class—just for the fun of it, if you will. One day
I walked into a class to discover that a student was already there. She had fired
up the computer and was so engrossed that she didn’t notice me. Trying not to
disturb her, I quelled my excitement and tiptoed around her to see what data she
was exploring. Alas, it was not the glow of DataScope lighting her face, but one
of the rather mindless puzzles that early Macs included under the Apple menu.
This was the closest I got in the DataScope days to realizing my fantasy.

It was this fantasy—of seeing students enjoying using a tool and using it
with purpose—that drove many of the basic design decisions in TinkerPlots.
The result was a tool that in ways is a complete opposite of DataScope.
Rather than working to reduce the complexity of TinkerPlots, we purposely
increased it. With rare exceptions, students are extremely enthusiastic with
TinkerPlots and frequently ask to work with it outside of class. I believe that
a big part of TinkerPlots’ appeal has to do with its complexity. In what fol-
lows, I attempt to describe how we managed to build a complex tool that
motivates students rather than overwhelms them.
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Figure 11.5 Information on 79 students along with their backpack weights dis-
played in TinkerPlots. Each case (student) is represented in a plot window (right)
as a case icon. Initially, the case icons appear as shown here, randomly arranged.
Clicking the Mix-up button (lower left of the plot window) sends the icons into a
new random arrangement. The case highlighted in the plot window belongs to
Sadie, whose data appears in the stack of Data Cards on the left.

Constructing Data Displays Using TinkerPlots

On first opening the plot window in TinkerPlots, individual case icons appear
in it haphazardly arranged (see Fig. 11.5). Given the goal of answering a par-
tcular question about the data, the immediate problem facing students is how
10 impose some suitable organization on the case icons. TinkerPlots comes
with no ready-made displays—no bar graphs, pie charts, or histograms.
Instead, students build these and other representations by progressively orga-
nizing data icons in the plot window using basic operators including order,
rack, and separate.

Figure 11.5 shows data I typically use as part of a first introduction to
TinkerPlots. 1 ask the class whether they think students in higher grades carry
feavier backpacks than do students in lower grades. I then have them explore
this data set to see whether it supports their expectations. Figures 11.6
through 11.8 are a series of screen shots showing one way in which these data
might be organized with TinkerPlots to answer this question.

In Figure 11.6, the cases have been separated into four bins according to
the weight of the backpacks. This separation required first selecting the
attribute PackWeight in the Data Cards and then pulling a plot icon to the



276 KONOLD

Figure 11.6 Plot icons separated into four bins according to the weight of
students’ backpacks. Shown above the plot window is a tool bar that includes
various plotting options. When one of these buttons is pressed, it appears
highlighted (as the horizontal Separate button currently is). Pressing that button
again removes the effects of that operation from the plot.

right to form the desired number of bins. To progress to the representation
shown in Figure 11.7, the icons were stacked, then separated completely until
the case icons appeared over their actual values on a number line. Then the
attribute Grade was selected, shown by the fact that the plot icons now appear
in various shades of gray (in color, they appear red). With Grade selected, the
Grade 5 students were separated vertically from the other grades. If we were
to continue pulling out each of the three other grades one by one, we’d then
see the distributions of PackWeight for each of the four grades in this data set
(grades 1, 3. 5, and 7). We could go on to place dividers to indicate where the
cases cluster, or to display the location of the means of all four groups (see
Rubin, Hammerman, Campbell, & Puttick, [2005] for a description of the
various TinkerPlots options that novices used to make comparisons between
groups).

Making these displays in TinkerPlots is considerably more complex than it
would be in DataScope, Mini Tools, Tabletop, Fathom, or most any professional
or educational tool. In almost all of these packages, one would simply specify
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Figure 11.7 Cases have been stacked, then fully separated on the x axis until
there are no bins. Then the grade 5 students have been separated out vertically,
forming a new y axis. The cases are now colored according to grade, with darker
gray (red in the actual program) indicating higher grade levels.

the two attributes and the appropriate graph type (e.g., stacked dot-plot). As we
have seen, making such a stacked dot-plot in TinkerPlots requires perhaps 10
separate steps. What is important to keep in mind, however, is that the stu-
dents, particularly when they are just learning the tool, typically do not have
in mind a particular graph type they want to make as they organize the data.
Rather, they take small steps in TinkerPlots, each step motivated by the goal
of altering slightly the current display to move closer to their goal—in this
case of being able to compare the pack weights of the different grades.
Because each of these individual steps is small, it is relatively easy for stu-
dents to evaluate whether the step is an improvement or not. If it is not a
productive move, they can easily backtrack. The fact that with each step the
icons animate into their new positions also helps students to determine the
nature of, and evaluate, each modification.

There are a number of reasons we designed TinkerPlots as a construction set.
A primary objective was that by giving students more fundamental choices
about how to represent the data, they would develop the sense that they were
making their own graphic representation rather than selecting from a set of pre-
formed options. When I have students investigate the backpack data with
TinkerPlots, 1 give them the task of making a graph that they can use to answer
the question posed above. Having a specific task, especially when first learning
TinkerPlots, is crucial. Without a clear goal, students would have no end to inch
toward and thus no basis for evaluating their actions.
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After about 30 minutes, most of the students have answered the question to
their satisfaction. I then have them walk around the room to observe the displays
that other students have made. What they see is an incredible variety, which
immediately presents them with the problem of learning how to interpret these
different displays, all of which are purportedly showing the same thing. But more
importantly, seeing all these different graphs makes it clear to them that
TinkerPlots is not doing the representational work for them. Rather, they are using
it as they might a set of construction blocks to fashion a design of their own
making. They are in the driver’s seat, which means they have to make thoughtful
decisions; mindlessly pressing buttons will most likely give them a poor result.
Indeed, it is quite easy in TinkerPlots to make cluttered and useless displays.

There are numerous factors that affect the interpretability of a data display
(Tufte, 1983). Many of these factors are ordinarily controlled by a software tool.
In TinkerPlots, we chose to leave some rather fundamental display aspects
under direct user control. Figure 11.8 shows the four levels of grade separated
out on the y axis. But the plot icons are so large that they spill over the bin lines.
and any subtle features of the four distributions are obscured. This sort of
plot-crowding routinely occurs as students are making various graphs in
TinkerPlots, and it is up to them to manually control the size of icons, which
they quickly learn to do. It is a control they seem to enjoy exercising.

Note, too, in Figure 11.8 that the four levels of grade are not ordered sen-
sibly. The current order resulted from the particular way each group was
pulled out of the “other” category visible in Figure 11.7. In creating this data
set, we intentionally entered the values of grade as text rather than as numbers
so that students would tend initially to get a display like this, with values of
grade not in an order ideal for comparing them. The ordering can be quickly
changed, however, by dragging axis labels to the desired locations. Once
ordered, students can sweep their eyes from bottom to top to evaluate the pat-
tern of differences among the groups without having to continually refer back
to the axis labels. In fact, it is this type of ordering from which graphic dis-
plays of data derive much of their power.

Leaving such details to the student further increases the complexity of the
program. However, taking control of things like icon size, bin size, and the
ordering of values on an axis helps students to become explicitly aware of
important principles that underlie good data display. Furthermore, leaving
these fundamental responsibilities to the student is yet another way of com-
municating to them that they, and not the software tool, are ultimately in con-
trol of what they produce. Finally, these are factors that most students seem
to enjoy having direct control over. Part of this satisfaction undoubtedly
comes from the fairly direct nature of the control and would be lost if instead
we had used dialogue boxes.
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Figure 11.8 The plot icons in this graph are so large they obscure much of the
data. Their size is under user control via the slider located on the tool bar below
the plot.

Making the Complex Manageable

Certainly, it is not the complexity itself that makes TinkerPlots compelling, but
the nature of that complexity. Indeed, one of the ways Biehler (1997) sug-
gested to make a complex tool manageable is to build it around a “conceptual
structure . . . which supports its piecewise appropriation” (p. 169). We chose
the operators separate, order, and stack after having observed how students
(and we ourselves) organized data on a table when it was presented as a col-
lection of cards with information about each case on a separate card
(Harradine & Konold, 2006). We then worked to implement these operations
in the software in a way that would allow students to see the computer opera-
tions as akin to what they do when physically arranging real-world objects.
This sense—that one already knows what the primary software operators will
do—becomes important in building up expectations about how the various
operators will interact when they are combined, because it is this ability to
combine operators in ZinkerPlots that makes it complex, and powerful.
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Implementing these intuitive operators in the software was harder than ==
initially expected, however. In our first testable prototype, about half of ==
representations that students would make by combining operators were nos-
sensical. To remedy this, we had to reinterpret what some of the operatic=:
did in various contexts. Stack, for example, works as one might expect w1
the case icon style used in Figures 11.5 to 11.8. However, there are other icon
styles where the stack operation behaves a bit differently so as to produce rez-
sonable displays. For example, icons can be changed to fuse rectanguliar. =
style used to make histograms (see bottom of Fig. 11.9). In this case, srack no:
only places case icons on top of one another, but also widens them so that the:
extend across the entire length of the bin they occupy. With the icon style fus:
circular, case icons become wedges that fuse together into a circle (pie
graphs). In this case, stack has no function and thus if it is turned on, it does
nothing. In general, the user is unaware of these differences, but pays no price
for this ignorance.

We avoid using error messages to instruct students, primarily because wz
worried that they would erode the attitude we are working hard to create—
that the student, not the software, is in control. In some cases, applying a=n
operator does nothing to the plot, and the button dims to indicate that it is in
a suppressed state (as happens with srack in the context of pie graphs). Agair.
this goes mostly unnoticed.

However, whenever we can, we show some change in the plot, even if it is
of only limited use. For example, when a numeric attribute is fully separated
on an axis, students can click the median button to display the location of the
median below the axis (see top of Fig. 11.9.) With a binned dot-plot, however.
it would be misleading to show the median as a specific point on an axis. But
rather than have nothing happen when students turn on the median in this
state, we display the median as a line running the length of the interval in
which the median occurs (middle graph in Fig. 11.9). Although it does not
provide much information about the value of the median, this display does
help communicate the fact that when we place different values into the same
bin we are, for the moment, considering them to be the same. This binned dot-
plot can be changed into a histogram by selecting the icon style fuse rectan-
gular (see bottom graph of Fig. 11.9). Now the median symbol once again
appears at a precise location on a continuous axis. The animation from the
binned dot-plot to the histogram shows the cases growing in width to the
edges of the bin lines, hinting at yet another change in how we are thinking
of the values in a common bin.
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Figure 11.9 These graphs display the percentage the backpacks are of body
weight. The top graph shows the location of the median (inverted T) at 13. In the
oinned dot-plot in the middle, the median now appears as a line below the bin,
ndicating that the median is in the interval 12-16. Changing the icon style to “fuse

rectangular” makes a histogram, which now again displays the precise location
of the median.
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HAT-PLOT: A CASE OF BUILDING
UP FROM STUDENT THINKING

In addition to building TinkerPlots around a conceptual structure involving the
operators stack, order, and separate, we also included features that were
inspired by what we and others had observed students wanting to do in making
and reading data displays. These features include the reference line, which stu-
dents use to mark salient features and to determine the precise value of case
icons, and dividers for partitioning of data into subgroups. In this section. I
describe the hat-plot, a new type of display we introduce in TinkerPlots.

One way to think of a hat-plot is as a generalization of Tukey’s (1977) box-
plot. Figure 11.10 shows percentile hat-plots for the weights of students in
four different grades. Each hat is composed of two parts: a “brim” and a
“crown.” The brim is a line that extends to the range for each group; the crown
is a rectangle that, in this case, shows the location of the middle 50% of the
data—the Interquartile Range (IQR). The particular hat-plots in Figure 11.10
are thus constructed using the same basic conventions of the box-plot.
Whereas the whiskers of a box-plot are drawn through the center of the IQR
rectangle, in the hat-plot the corresponding line is drawn along the bottom of
this rectangle. We think that locating the central rectangle on top of the
whiskers, or range line, helps emphasize what the center rectangle is
depicting—the location of a central clump of the data. I say more about this
later. In addition, our own sense is that the hat-like display that results makes
it easier for students to notice and describe general differences in the shapes
of the distributions. Note in Figure 11.10, for example, the striking difference
in appearance between the hat for the weights of first-graders, with its rela-
tively tall crown, and the hat for the seventh-graders, with its relatively short,
but spreading, crown. The more skewed a distribution is, the more its hat-plot
will appear as something like a baseball cap. We also think students will take
quickly to the idea of summarizing distributions with hats, in part because
they will already have a rich vocabulary for doing so.

Whereas the median is an inherent part of the box-plot display, it is not
automatically displayed as part of the hat-plot. But using a separate control,
you can display its location below the axis as shown in Figure 11.10. The
result is that a box-plot divides the data into four parts, whereas the hat-plot
divides it into three. We anticipate that this will have some pedagogical
advantages as students already have a strong tendency to view many distrib-
utions as comprising three groups (see, e.g., Bakker & Gravemeijer, 2004).

A more fundamental difference between hat-plots and box-plots is that
with hat-plots, you can change the setting for the brim edges to represent per-
centiles other than the box-plot’s 25th and 75th percentiles. By clicking and
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Figure 11.10 Superimposed percentile hat-plots for weight (in pounds) of
students in grades 1, 3, 5, and 7. The edges of the hat crowns show the location
of the 25th and 75th percentiles. The inverted T's under each group indicate
medians. Thus these particular hat-plots show the same basic information as
would box-plots, except that rather than retracting to display outliers, hat-plot
brims extend to the minimum and maximum values.

dragging the edge of a brim, you can change these into, for example,
20th—80th percentile hats. Furthermore, each brim edge is adjusted indepen-
dently, so you could set them to display 20th-76th percentiles. This allows
students to make hat-plots that are initially tailored to a particular group of
data, which they later can test on other groups.

You can also switch the metric of the brim from percentiles to ranges, aver-
age deviations or standard deviations. In Figure 11.11, I've used the range
metric to construct hat crowns that extend from one third of the range to two
thirds of the range.

Some have questioned our choice to include in TinkerPlots a display that
is not among those listed in the NCTM Standards for the middle grades.
There seems to be an implicit assumption in this question—that if something
is not in the Standards, we should not include it in our learning objectives,
curricula, or student tools. Although there are some grounds for taking this
stance, we should reject it as a guiding principle.

The Standards are not a sacred canon but rather “a resource and guide”
(NCTM, 2000, p. ix). NCTM describes the Standards as “part of an ongoing
process of improving mathematics education’ and believes that for the Standards
“to remain viable, the goals and visions they embody must periodically be
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Figure 11.11 Range hat-plots for the weight of students (in pounds) in grades
1, 3, 5, and 7. These plots divide the range for each grade into equal thirds. The
symbols below the bin lines indicate the midranges.

examined, evaluated, tested by practitioners, and revised” (p. x). Thus, it is
contrary to the spirit of the Standards to use them to justify and support a rigid
orthodoxy about what and how we should teach. As curriculum writers.
researchers, and educators, we should be pushing ourselves to test and refine
our vision of how students might learn to analyze data. Put another way, we
should be thinking at least as much about what the next version of the
Standards should say as we do about what this version says.

Instructional Role of Hat-Plots

In the following, I briefly present the rationale for including hat-plots in
TinkerPlots and the reasons why I think they could play a helpful role in mid-
dle school data-analysis curricula. I also offer some tentative, and admittedly
vague, ideas about how they might be used in a sequence of instruction, con-
fident only in the fact that these ideas will change as a result of more thought
and of trying them out in classrooms.

From the beginning, we struggled with the question of whether and how to
implement box-plots in TinkerPlots. One of our objectives was to avoid using
plot types as operational primitives. Our aim was to have standard displays.
such as scatter-plots and histograms, be among the many possibilities that
emerged as students progressively organized data using the basic operators
order, stack, and separate. And as previously mentioned, the more general
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principle that informed the design of TinkerPlots was that, to the extent
possible, we should build instruction on what students already know and are
inclined to do.

Box-plots posed a problem to both these principles. First, the operational
primitives in TinkerPlots worked well for producing most of the traditional
displays included in the current middle school data analysis curricula, but
they did not get us to box-plots. (This is another indication, by the way, of just
how different box-plots are from most other statistical graphs. See Bakker,
Biehler & Konold, 2005.) Second, regardless of how we imagined imple-
menting box-plots in TinkerPlots, we could see no clear way of introducing
box-plots to students other than as a convention some statisticians find useful.
It should be clear at this point that despite what I said above about not allow-
ing the Standards to co-opt educational choices, we as developers certainly
feel a great deal of pressure to accommodate them. The fear is that if we do
not, various decision-makers including publishers, school boards, and teach-
ers, who themselves are often under the mandate to adopt “Standards-based”
approaches, will elect not to use what we have developed. In this regard, the
Standards get used both to facilitate and to stifle reform and innovation.

One of our early solutions to implementing box-plots was to adopt the
approach used in the Mini Tools (see Cobb, 1999). In Mini Tool 2, students
can overlay various types of groupings on top of stacked dot-plot displays.
Creating four, equal-count groups is one of several options, and one that the
Vanderbilt learning trajectory made special use of, because it could lead nat-
urally into box-plots. This solved the first problem for us, in that box-plots
could emerge in TinkerPlots as they did in the Mini Tools from the more basic
act of dividing into groups.

However, there were aspects of teaching box-plots to students that we
struggled with. In particular, it was not clear how to motivate students to make
groups composed of roughly equal numbers of cases, and furthermore to
make four such groups (rather than three or five or twenty). As Arthur Bakker
put it in an e-mail exchange with us, “I have never found any activities with
data sets that really begged to be organized by four equal [count] groups ...”

These reservations eventually led us to think about how we might build
box-plot-like displays on the well-known tendency of students to summarize
single, numeric distributions using “center’” or “modal” clumps. These are
ranges of values in the heart of a distribution that students use to indicate what
Is “typical” or “usual.”” Among the researchers who have reported the use of
these sorts of “hills” or “clumps™ are Bakker (2001): Cobb, (1999); Konold
and Higgins (2003); Konold, Robinson, Khalil, Pollatsek, Well, Wing, et al.

2002); and Noss, Pozzi, and Hoyles (1999).

Inspired by this research, we included in TinkerPlots a divider tool that

displays two lines on top of a distribution of values that students can freely
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Figure 11.12 Stacked dot-plots of backpack weight (in pounds) of students in
grades 1, 3, 5 and 7. Overlaid on each distribution is a pair of adjustable dividers
that students can use to mark where data tends to be centered. As an option, they
can display the number (and/or percent) of cases contained in each of the three
divisions.

adjust (see Fig. 11.12). Our primary intention was that students would use these
dividers to mark the location of modal clumps and, optionally, to display the
number (or percent) of cases both inside and outside these clumps. Many
researchers have commented on the difficulty students have using normative
averages, including the mean and median, in meaningful ways (for a review, see
Konold & Higgins, 2003). Modal clumps may provide a way for students to
begin by using an average-like construct that does make intuitive sense to them.
Furthermore, Cobb, Gravemeijer and their colleagues have described teaching
sequences directed towards encouraging students to use these to compare
groups by noting the relative positions of the “hills” in two distributions.

Figure 11.13 shows the added possibility in TinkerPlots of simultaneously
seeing modal clumps and the location of means and medians. Seeing these
together provides opportunities for helping students to develop more intuitive
views of the standard measures of center. Freed from the role of representing
what’s average about the data, modal clumps might then provide students an
informal way of describing the “average” variability in the data. Research by
Konold et al. (2002) suggests in fact that the width of students’ modal clumps
is remarkably close to those of IQRs.
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Figure 11.13 The same displays as shown in Figure 11.11 with the addition of
the medians.

Our idea for hat-plots then emerged as a way for students to formalize their
idea of modal clump, so that rather than fitting modal clumps ad hoc on the
basis of how data happened to be distributed in a particular display, they
could set them according to more objective, and previously agreed-to, crite-
ria. Thus, our overall intention is that in analyzing data, students will natu-
rally take to using the dividers provided in TinkerPlots as a way to indicate
and communicate to others what they perceive as typical values in a distribu-
tion. Hat-plots will offer students a way of formalizing these modal clumps
as part of establishing agreed on and objective criteria for using modal
clumps to decide, for example, if two groups are different. That hat-plots
divide a distribution into three components, just as dividers do, should facili-
tate the transition from dividers to hat-plots. It also fits with the observations
of several researchers that students often initially perceive a distribution of
values as comprising low, middle, and high values (e.g., see Bakker &
Gravemeijer, 2004).

One reason for providing different metrics for hat-plots (e.g., where the
three components split the distribution into different fractions of the range or
into multiples of the average or standard deviation) is to encourage students
to view hat-plots as a more general method for representing data. Another is
to allow exploration of the relative strengths of various metrics. For many stu-
dents, the range is a salient feature of distributions. We therefore expect
that many students will initially choose to construct hat-plots by specifying
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fractions of the range, which is why originally we used the range metric as
the default setting. Our hope was that with some exploration, students would
discover some of the drawbacks of using the range. For example, it will often
be the case that a range hat-plot that looks reasonable for the group on which
it was constructed will not do a good job on other groups. Note that in Figure
11.11, the range hat-plots for students in grades 7 and 1 seem reasonable as
summaries of the modal clumps; those for grades 5 and 3 do a fairly poor job.
In contrast, the percentile hat-plots for the same data in Figure 11.10 fit the
modal clumps of all of the groups reasonably well. Students might also dis-
cover using the range metric how one value can drastically affect the appear-
ance of the hat-plot. Indeed, by dragging a single case on one of the extremes
using the change-value tool in TinkerPlots, they can watch the entire hat slide
upwards or downwards in pace with that case, making the range metric per-
haps too fussy or sensitive for use in comparing groups. As an aside, we later
changed the hat-plot default setting to percentiles when we observed many
teachers using the hat-plot’s range default setting but assuming that they were
percentiles.

We have included in TinkerPlots both dividers and hat-plots in the hope
that they may provide means for allowing students to build on intuitive ideas
that they have about distributions. Our reasons for thinking these tools might
be useful are based on recent research that has explored student reasoning and
investigated various approaches to instruction that build on students’ intuitive
ideas. In the near future, we expect to learn from the curriculum developers.
who are working in collaboration with the TinkerPlots development team.
whether hat-plots and dividers are indeed useful, and what modifications or
enhancements might make them more so.

CONCLUSIONS

In helping students learn a complex domain such as data analysis, we
inevitably must find effective ways to restructure the domain into manageablz
components. The art is in finding ways to do this that preserve the essence anc
purpose of the pursuit. It is all too common in classrooms to find students suc-
ceeding at learning the small bits they are fed, but never coming to see the biz
picture nor experiencing the excitement of the enterprise. Of course.
TinkerPlots by itself cannot change this, and much depends on how teachers
and curriculum developers put it to use. Just as I have watched in frustration
as students in traditional classrooms spend months learning to make simplz
graphs of single attributes and never get to a question they care about, I now
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have had the experience of watching students work through teacher-made
worksheets to learn TinkerPlots operations one at a time, “mastering” each
one before moving on to the next. This is despite the fact that the parts can-
not be mastered in isolation or out of context.

After class, I spoke with the teacher who had created the worksheets and
gently offered the observation that students could discover and learn to use
many of the commands he was drilling them on as a normal part of pursing a
question. He informed me that they didn’t have time in their schedule to have
students “playing around.” Although his response added to my despair about
the direction education in the United States seems to be heading under the
pressures of the testing/accountability movement, I also took it as another
indicator that we succeeded with TinkerPlots in developing the tool we had
hoped to—that in the absence of the strict regime of a worksheet, students
seem to actually enjoy using it to explore data.
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