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Randomness is well enough understood to be
misunderstood.'

Alexander Pollatsek
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In their article Ayton, Hunt and Wright address a
number of issues that impinge on the concept of
randomness. They appear to question not only the
methodological soundness and general implications of
research on ‘misconceptions’ in statistics, but also the
soundness of aspects of statistical inference. We con-
centrate here on a few key issues about which we are
in disagreement (we think) with the authors.

Rationality vs. Statistical Misconceptions

One of the basic purposes of their article is to rescue
the lay person from charges of irrationality that have
been based on subjects’ non-normative performance on
various statistical tasks. Their first line of defence
against these charges involves a reiteration of Hume’s
injunction not to mistake empirical induction for a
principle of logic. On the basis of the ‘problem of induc-
tion,” Ayton et al. argue that because all inferences from
real-world data rest on the same shaky ground, it is
unfair to label only some of these (e.g., the belief in
negative recency in.coin flipping) as irrational. If the
authors had limited. their discussion to this strict sense
of rationality, their argument would have been incon-
trovertible (though trivial). But they go on to discuss
the rationality of naive conceptions of randomness
based on the adaptability of those beliefs, and here their
argument falters. We illustrate our point with an ex-
ample.

Person B is assessing Person C’s beliefs about ran-
dom events. B supplies a ‘fair’ coin, and they mutually
agree on a shaking procedure that ‘mixes’ the coin well
between flips. They flip the coin 100 times and at no

point does C question the randomness of the results.
They continue flipping until five straight heads occur,
at which time B suggests that they wager on the out-
come of the next flip. C quickly bets that a tail will
occur, and after some bargaining agrees to give B 3
to 2 odds. Asked to justify this bet, C argues that a
tail is much more likely than a head on the next flip
because ‘according to probability theory the coin needs
to show a tail once in a while for it to be a fair coin.’
C’s behavior may not be irrational in a strict sense.
But the justification, even though understandable, is
certainly incorrect and is not derived from probability
theory. Furthermore, given that this specific bet is
undertaken with the expectation of monetary gain, C’s
behavior is not optimal, and therefore irrational in the
adaptive sense of that term. If C persists in giving these
odds in similar situations, C will lose money, Hume
notwithstanding.

A discussion of whether actual experiments have
indeed been convincing demonstrations of such irratio-
nality is impossible here given space constraints. Any
single experiment can always be given an alternative
explanation. However, there are now numerous demon-
strations that together are most parsimoniously
explained by the hypothesis that a considerable percent-
age of people believe in, and even structure bets on,
the ‘gambler’s fallacy.’

In addition to methodological problems in the
research on conceptions of randomness, Ayton et al.
claim that it is not irrational to believe in the gambler’s
fallacy because it is possible that in the real world,
events that are loosely termed ‘random’ have more
alternations built into them than perseverations. The
general form of this argument is:

(1) Experience leads to the belief that x is true of situa-
tion A.

(2) Situation B looks like situation 4.

(3) Assume xis true of B.

While inferences of this type are not unreasonable,



they are frequently invalid. Indeed, one of the central
points of the research of Tversky and Kahneman is
that people develop heuristics that are reasonable in
many contexts but apply them to situations for which
they are inappropriate. Whether or not these particular
overgeneralizations lead to dire consequences in the
real world is indeed debatable. However, there should
be no doubt that if people could be helped to distinguish
between random and non-random events, and to reason
normatively about the former, they could perform more
optimally than they currently do. Given a populace
that finally understood the impossibility of developing
a successful betting system for randomly-generated out-
comes, casinos and government-sponsored lotteries
would undoubtedly feel the pinch. The market would
also dry up for clever entrepreneurs who are selling
randomizing devices to lottery players with the claim
that numbers selected with this device have an
improved chance of winning because they are generated
in the same way as the winning numbers.

Inconsistencies in Tests of Randomness

In their attempt to reveal inconsistency and paradox
in the testing of sequences for deviations from random-
ness, the authors present a confused montage of Bay-
esian and hypothesis-testing logic. As a result, it is often
difficult to determine what they are saying. However,
certain of their claims appear to be incorrect, or at
least misleading.

For example, the authors appear to assert that Bay-
esian logic is helpless in allowing one to discriminate
‘random’ from ‘non-random’” hypotheses for a particu-
lar sequence without making a specific hypothesis about
the non-random alternative. Their point may merely
be that if one has no idea about the alternative hypoth-
esis (e.g., the sequence was a result of God’s whim),
then Bayesian logic will get one nowhere. Their ‘deriva-
tion’ simply demonstrates that if one assumes the likeli-
hood ratio to be one (by some strange equal-ignorance
argument) then it follows (tautologically) that the
datum will have no impact on the hypothesis. The rel-
evance of this example to Bayesian logic is minimal.

They appear to be claiming something more, how-
ever, since they later assert that ‘If we know a die as
biased, but do not know how, we cannot revise the
probabilities we would derive for a fair die’ (p. 233).
We think the authors are claiming here that Bayes’
theorem is helpless not only in the case of ‘no alternative
hypothesis’ but also in the case of fairly general hypoth-
eses. To simplify the discussion, let us shift from a die
to the case in which one is interested in testing whether
a particular coin is ‘fair’ — i.e., if p(H) = 0.5, assuming
independence. In a Bayesian framework, there are stan-
dard calculations for posterior odds (given a sequence
of observations) that avoid the necessity of positing
a particular alternative hypothesis. For example, one
merely has to posit some a priori distribution (e.g., rec-
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tangular on the interval [0,1]) on the parameter p of
obtaining a head to arrive at a posterior distribution
for the probability of heads. While the posterior distri-
bution on p will depend on the particular prior distribu-
tion selected, a strength of the Bayesian method is that
this distribution will converge on the observed fre-
quency given large amounts of data, assuming almost
any a priori distribution.

Their treatment of hypothesis testing is even more
confusing. They repeatedly point out, for example, that
regardless of conclusions drawn about the randomness
of a particular sequence, ‘it is not possible to verify
beyond all doubt that any given real sequence is, or
is not, random.” (p. 227). They seem to regard this
truism about Type I and Type II errors as a telling
argument against the validity of tests of randomness
per se rather than as a good example of what Hume
was talking about. They also find it paradoxical that
we cannot put together a random series of length n
by stringing together m sequences of length n/m, each
of which has passed some randomness test (p. 230).
Of course, the reason that we cannot is because in the
course of testing sequences we would eliminate
(through Type I error) a certain percentage of the ran-
dom sequences of length n/m. More to the point, a
random sequence is not one in which there is a ‘com-
plete absence of every possible type of pattern’ (p. 232),
but one which was generated via a process of random
selection. Does this mean that the concept of random-
ness is ill-formed because we have no generating mech-
anism that is truly random? Not unless we also regard
the concept of a circle problematic because we have
no method of generating a perfect one — that however
precisely a particular circle may be constructed, it can
always be shown under closer scrutiny to deviate from
circularity.

Nor is it as problematic as the authors suggest (p.
230) to reject the hypothesis that a particular coin (or
a person calling out Hs and Ts in an attempt to mimic
a coin) is ‘fair’. 4 priori, the two most common devi-
ations one would be on guard against are (a) that p
is not 0.5 and (b) first-order sequential dependency.
Tests can be conducted with modest samples in which
large deviations from p = 0.5 and independence can
usually be detected. Of course, as the authors point
out, peculiar higher-order sequential dependencies are
difficult to detect. The practical implications of this dif-
ficulty or how it relates to the research on the gambler’s
fallacy escape us.

The authors do suggest in conclusion that there might
be some circumstances in which there are practical
consequences for seeing patterns where there are none.
In this connection they mention the belief among
basketball enthusiasts in the ‘hot hand.” We would
quickly add that guarding against these ‘practical
consequences’ is the major purpose for using inferential
statistics in the social sciences, where a large portion of



220 Journal of Behavioral Decision Making

the results could parsimoniously be explained as com-
ing from a random device, and it is worthwhile to estab-
lish for a certain set of data that at least that hypothesis
can reasonably be rejected. We think the tools gener-
ated for this purpose are quite useful and have suc-
ceeded in discriminating ‘non-random’ data from data
that, for the purposes of interpretation, may as well
be ‘random.” And to find that those who are trained
in the use of statistical methods frequently do no better
than novices on various statistical-reasoning tasks
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ought to produce some concern, if not for the cause
of rationality in everyday decision-making, then cer-
tainly for the cause of whatever it is we hope to foster
through formal education.
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Randomness and Randomizers: Maybe the Problem is
not so Big.
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The central theme in the challenging paper by Ayton,
Hunt, and Wright is that we will never find out whether
people are good randomizers and good detectors of
randomness, if we do not generate hypotheses about
what else they might be. I agree with this tenet, but
I don’t think this poses a serious problem: there are
some useful and plausible hypotheses available. It is
even the case that testing some or even most of these
alternative hypotheses render the discussion about
what randomness really is, or how it is measured, some-
what superfluous. For sake of simplicity 1 will limit
the discussion to the generation paradigm, but the argu-
ments apply equally well to problems of induction and
detection of randomness.

Properties, not sequences

When studying randomization behaviour, we should
be interested, not in the generated sequences as such,
but in properties of those sequences. Take as an ex-
ample Mittenecker’s (1953) hypothesis that subjects
randomize by drawing without replacement. Thus, they
would mimic throwing dice by placing successive per-
mutations of the numbers 1 to 6 in a long sequence.
Such an hypothesis can be tested by considering some
of its consequences: no runs longer than 2, runs of 2
occur once in 36 elements, runs of 2 have a minimum
distance of four other elements in between, the maxi-
mum number of other elements before repetition of
an element ( = maximum recurrence distance) is 10,
the distribution of recurrence distances is triangular
with a peak at 5, etc. Acceptance or rejection of the
model depends on such properties of the generated
sequences. For instance, a run of three identical el-
ements cannot be produced by Mittenecker’s process,
and would, if it occurs, refute the model. That argument
is not weakened by the fact that all specific sequences
are equally likely to be produced by a random genera-
tor. I admit that 1t is not perfectly clear how much
discrepancy between predicted and observed properties

can be tolerated, but that problem is common to the
testing of all behavioural theories.

Mittenecker’s hypothesis is not very enlightening,
because it involves permutations produced by a rando-
mizer, and it is not explained how this randomizer
works. However, rejecting Mittenecker’s hypothesis for
its ‘homunculus’ character does not depend on defining
a ‘standard’ of randomness, or on application of a ran-
domness test.

The acceptance or rejection of a model can be (but
need not be) guided by the Bayesian principle of accept-
ing the model that is most likely in view of the data.
This would necessitate a specification of some proper-
ties of sequences produced by a process of random
selection. For instance, the principle that each element
is generated independently of previous elements implies
that the recurrence distribution is described by a de-
creasing, negatively accelerated, geometric function.
Testing the data against the two hypotheses of a tri-
angular or a geometric recurrence distribution does not
conflict with the principle that any response sequence
is equally likely to be produced by a random generator.
The equal likelihood holds for response sequences, not
for shapes of recurrence distributions.

Properties of generators, not of sequences
Mittenecker’s hypothesis differs from a random genera-
tor with respect to replacement of the drawn elements,
and this affects the independence property. Therefore
any statistic, other than the recurrence distribution,
that reflects the independence property, provides an
opportunity for comparing the two competing hypoth-
eses.

The definition of randomness is not an obstacle here.
The real problem is that randomness is in reality a prop-
erty of a generator, not of its products. It must be admit-
ted that inferring properties of generators on the basis
of their products will always be problematic. Hypoth-
esis testing in the Neyman-Pearson tradition is logically
flawed, and Bayesian hypothesis testing depends on the
ingenuity of the scientist imagining alternative hypoth-
eses. It would be useful to establish properties of gener-
ators without the mediation of their products. An
example of such a property is the independent selection



