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In Experiment 1, subjects estimated (1) the mean of a random sample of 10 scores consisting
of 9 unknown scores and 1 known score that was divergent from the population mean and (2) the
mean of the 9 unknown scores. The modal answer (about 40% of the responses) for both sample
means was the population mean. The results extend the work of Tversky and Kahneman (1971)
by demonstrating that subjects hold a passive, descriptive view of random sampling rather
than an active-balancing model. This result was explored further in in-depth interviews (Ex-
periment 2), wherein subjects solved the problem while explaining their reasoning. The in!:er-
view data replicated Experiment 1 and further showed: (1) that subjects’ solutions were fairly
stable—when presented with alternative solutions, including the correct one, few subjects
changed their answers; (2) little evidence of a balancing mechanism; and (3) that acceptance of
both means as 400 is largely a result of the perceived unpredictability of ‘‘random samples.”

There is at present a large body of evidence indicat-
ing that students believe that random samples resemble
the population from which they are drawn. If the sample
size is sufficiently large, then a random sample will, in
fact, tend to be similar to the population from which it
is drawn. The point at which the typical student appar-
ently differs from the normative model of statistics is
that he or she believes that small as well as large samples
have a high probability of looking like the population.
Tversky and Kahneman (1971) dubbed this misconcep-
tion “the law of small numbers.” They proposed that a
heuristic or belief called “representativeness” underlies
this misconception. “A person who follows this heuristic
evaluates the probability of an uncertain event, or a
sample, by the degree to which it is: (i) similar in es-
sential properties to its parent population; and (ii) re-
flects the salient features of the process by which it is
generated” (Kahneman & Tversky, 1972, p. 431).

One source of evidence for this misconception has
come from investigation of what is popularly known as
the “gambler’s fallacy.” A simple example of the gam-
bler’s fallacy is the belief that if a fair coin has come up
heads a large number of times in a row, then there is an
increased chance that it will come up tails on the next
flip. The gambler’s fallacy can be described as the be-
lief that, in random sampling, the data that have already
been sampled will influence the data that are yet to be
sampled. This, of course, violates independence, which is
a fundamental property of true random sampling. In
reallife coin flipping, shaking the coin well between
flips would guarantee some reasonable approximation
of independence from one flip to another.
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The prototypical problem used by Tversky and
Kahneman (1971) to explore the gambler’s fallacy is the
following:

The mean IQ of the population of eighth-graders in a city
is known to be 100. You have selected a random sample of
50 children for a study of educational achievements. The
first child tested has an IQ of 150. What do you expect the
mean IQ to be for the whole sample?

If the sampling were random, then the best guess for the
mean score of the next 49 children sampled is 100.
Therefore, the best guess for the entire sample of 50
children is the weighted mean of 150 and 100, or 101.
However, the typical answer to this problem is 100. This
finding reflects the gambler’s fallacy because the answer
of “100” violates the assumption of independence.
An answer of “100” logically implies that the mean of
the next 49 children is influenced by the score of the
first child sampled. It is not known whether subjects
realize that this implication follows from their answer,
or whether the implication is a critical component of
the representativeness heuristic. Before discussing this
question, we must briefly discuss other evidence for
representativeness.

Bar-Hillel (1980) and Kahneman and Tversky (1972)
have employed a second paradigm to demonstrate the
heuristic of representativeness. Typically, the subject
is shown two samples and asked to judge which is more
likely. In their original work, Kahneman and Tversky
(1972) dealt with events modeled by Bernoulli trials.
They found, for example, that subjects thought that,
for a sequence of six births, the exact order of G B
G B B G (G = girl; B = boy) is more likely than the
order B G B B B B, presumably because the sequence
with five boys and one girl fails to reflect the proportion
of boys and girls in the population. Subjects also esti-
mated that the probability of a sequence like B B B
G G G was less than that of G BB G B G, presumably
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because the former appears less random. Bar-Hillel
(1980) extended this research to determine which
characteristics of samples to which subjects are attend-
ing when they judge samples to be more or less likely
than others. She found that subjects think that a sample
should have not only about the same mean as the popu-
lation, but also about the same standard deviation.

Thus, the evidence is compelling that subjects believe
that even small samples should look like the population
and that a random sample should look random. Qur
interest is in determining whether the heuristic of repre-
sentativeness is a fundamental belief, or axiom, in the
layman’s theory of random samples, or whether it is
deducible from some more basic mechanistic belief.
This distinction will become clearer if we digress for a
moment and speculate about how an expert thinks
about large samples.

Presumably, an expert’s fundamental conception of
random variables and random sampling is a process
model. Perhaps the most widely used model is the “urn-
drawing,” or “box,” model, in which random sampling
is viewed as isomorphic to the process of drawing
labeled balls or slips of paper from an urn or box, replac-
ing them, shaking well, and then drawing again. From
this model, the idealization of which can be summarized
by algebraic expressions, certain conclusions follow,
These include the “law of large numbers,” which says
(roughly) that if a random sample is large enough, the
relative frequencies of outcomes in the sample have a
very high probability of being close approximations of
those in the population. It is likely that, in dealing with
large samples, the expert appeals simply to the property
of representativeness derivable from the law of large
numbers, rather than conceptualizing random sampling
in terms of a process. However, if challenged, or if some
absurd consequence arose from an attempted applica-
tion of this intuitive version of the law of large numbers,
the expert could go back to the more basic process
model of sampling to check whether the consequence
did in fact follow from probability theory.

The evidence shows that novices are likely to believe
that small, as well as large, samples are representative.
(There are data indicating that experts overapply repre-
sentativeness as well; Tversky & Kahneman, 1971.)
This belief could plausibly follow from one of two basic
heuristics. The first possibility is that representativeness
itself is the basic heuristic. In other words, the basic
heuristic in thinking about random samples is descrip-
tive: Random samples look approximately like the
population, and further, random sequences of events
look “random.” There is, however, a second possibility.
Subjects could have an erroneous process model of
random samples from which representativeness of even
small samples followed as a conclusion, just as the
heuristic of representativeness for large samples could
follow from the correct urn-drawing heuristic of the
expert. What might such a process model be? One that
has been suggested in statistics books (e.g., Freedman,
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Pisani, & Purves, 1978, chap. 16; Hays, 1981, chap. 1) is
“active balancing” or “compensation,” specifically, that
some active process guarantees that things will even out
in the long run. Apparently, such a belief is exposed in
the coin-flipping example of the gambler’s fallacy when
the subject predicts that, following a run of tails, the
next coin is likely to come up heads. The idea that things
will “even out” suggests a notion of active balancing.

However, the heuristic of active balancing might be
deduced from the heuristic of representativeness. If, in
the coin example, the subject believes that samples
should look like the population of outcomes of flips,
then samples that are close to half heads and half tails
will be the most representative. If one has already ob-
served 9 heads and is predicting the outcome of the 10th
flip, then presumably a sample of 9 heads and 1 tail
will be more representative of the population than a
sample of 10 heads, so that the outcome of “tail” on the
10th trial should be more likely than “head.”

On what basis can one decide whether the representa-
tiveness (i.e., descriptive) or active-balancing heuristic
is the more basic? In the coin example mentioned above,
both heuristics would predict that a head would be
more likely to turn up following a run of tails. However,
there are situations in which the active-balancing and
representativeness heuristics lead to different predic-
tions. Consider the Tversky and Kahneman (1971)
IQ example mentioned earlier. Again, both heuristics
would predict an answer of 100. However, if asked to
predict the mean 1Q of the last 49 students in the
sample, subjects who thought that all samples should
look like the population would give an answer of 100,
but those who employed an active-balancing heuristic
would give an answer smaller than 100 (so that the
entire sample of 50 scores could average 100).

The present study extended Tversky and Kahneman’s
(1971) study by employing an additional follow-up
question about the mean of the sample excluding the
known score. Additionally, we were concerned that sub-
jects might think of 101 as being approximately 100,
and thus answer “100” even though they knew the mean
would be slightly higher than 100. Accordingly, in our
problems the sample size was made smaller so that the
difference between the correct answer and the popula-
tion mean would be more salient. Another feature of our
experiments was to have some subjects “think out
loud” so that we could better understand the heuristics
they were employing.

EXPERIMENT 1

Method '
Materials. Two problems were employed. One was a variant
of the Tversky and Kahneman (1971) 1Q problem stated above.

1Q Problem

The average IQ of the population of eighth-graders in a city
is known to be 100. You have selected a random sample of
10 children for a study in educational achievement. The first



chdd tested has an 1Q of 150. What do you expect the aver-
age IQ to be for the whole sample?

What do you expect the average 1Q to be for the next 9
children, not including the 1507

(The correct solution to the first question is 105; that to the
second is 100.)

The second problem that was employed is similar, using an
SAT instead of an IQ cover story.

SAT Problem

The average SAT for all the high school students in a large
school district is known to be 400. You have randomly
picked 10 students for a study in educational achievement.
The first student you picked had an SAT of 250. What do
you expect the average SAT to be for the entire sample of 10?

What do you cxpect the average SAT to be for the next 9
students, not including the 250?

(The correct solution to the first question is 385; that to the
second is 400.)

Subjects. The subjects were undergraduates at the University
of Massachusetts who were enrolled in psychology courses. The
31 subjects who were interviewed were selected from a pool of
student volunteers and received bonus class credit for their
participation. The 205 students who filled out questionnaires
did so during a regular class session and were told that they
would be helping us to understand how people think about
statistics. No subject participated in both the questionnaire and
interview phases. Both phases contained approximately equal
numbers of males and females.

Procedure. The questionnaire was administered to four
undergraduate psychology statistics classes and took about
10 min to complete. The SAT problem was the first of three
problems on the questionnaire, and both parts of the SAT
problem appeared together on a single page.

In the interview phase, the subject was given either the SAT
or the IQ problem, as well as several other unrelated problems
that will not be discussed in this paper. A subject was given a
sheet of paper on which appeared the first paragraph of the
problem and was asked to read it aloud, so that the experi-
menter knew that it had been read correctly. The subject then
answered the first question, thinking aloud as much as possible.
When he or she had given an answer, the interviewer orally pre-
sented the second part of the problem. The interviewer then
asked follow-up questions designed to further elucidate what
the subject was thinking. The session lasted about 1 h, and
approximately 10 to 15 min were spent on one of the two prob-
lems discussed here.
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Results and Discussion

The data are displayed in Table 1. For the question-
naire subjects, the numerical answers were tabulated.
For the interview subjects, the numerical answers, be-
fore any interviewer intervention, were obtained from
videotapes. Several features are apparent. First, the
answer predicted by representativeness, namely, that the
means of both samples are equal to the population
mean, is the modal answer. It was given by 33% of the
subjects who answered the questionnaires and 48% of
the subjects who were interviewed. Second, there is
considerable variation in the answers given by the sub-
jects. Twenty-one percent of the subjects gave the
correct solution, and only 13% of the subjects gave an
answer consistent with a balancing heuristic.

In addition, 33% of the questionnaire subjects and
13% of the interview subjects gave answers inconsistent
with the correct solution, representativeness, or balanc-
ing. The fact that most of these “deviant” answers
occurred in the questionnaire situation suggests that
many of them resulted from the subjects’ not having
read the question carefully enough and thus misunder-
standing it on a trivial level. Many of these subjects
reported a best guess of greater than 400 for the sample
of 10, which seems uninterpretable except as a misread-
ing of the question. However, one pattern (labeled
“Trend” in Table 1) deserves some comment, because
it appeared in the interviews and has a plausible under-
lying rationale. In this pattern, the subjects thought
(correctly) that the mean of the sample of 10 would be
lower than 400. In addition, the two means they gave
were consistent, in that the mean of 10 could be the
average of the first observation and the average of the
next 9 observations. However, it departed from the
correct statistical answer in that the mean of the next
9 students was also thought to be less than 400. Com-
ments from the two subjects in the interviews who
showed this pattern of responses indicated that the
divergent first score led them to believe that the popula-
tion mean was not actually 400 as stated in the problem.

In summary, the present results replicate those of
Kahneman and Tversky (1972) in that the modal esti-

Table 1
Frequency of Solution Types, Experiment 1

Solution Type*

Mean of Mean of Questionnaires: Interviews:
10 Scores 9 Scores Label SAT Problem IQ Problem SAT Problem Combined
Less than 400 400 Correct Solution 44 (21%) 3 (30%) 3 (14%) 6 (19%)
400 400 Representative 68 (33%) 6 (60%) 9 (43%) 15 (48%)
400 . 400+ Balancing 25 (12%) 1(10%) 5 (24%) 6 (19%)
400——* 400- Trend 18 ( 9%) 0( 0%) 2 (10%) 2( 6%)
Unclassified 50 (24%) 0( 0%) 2(10%) 2( 6%)
Totals 205 10 21 31
*Numerical values are answers for the SAT problem. Classification of responses for the IQ problem is analogous. **For the

trend solution, mean of 10 scores < mean of 9 scores <

400.
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mate of the mean of the sample of 10 was the popula-
tion mean. More importantly, 71% of the 95 question-
naire subjects and 71% of the 21 interview subjects
who gave the population mean for the mean of the
sample of 10 also gave the population mean as their
best guess of the mean of the nine unknown scores. The
percentage for each group was significantly greater than
50% [x2(1) = 26.5,p<.001,and x*(1) = 3.86,p < .05,
respectively]. This answer was inconsistent with a
balancing heuristic and indicated that these subjects
thought that both the sample of 10 students and the
sample of 9 students were representative. Moreover,
representativeness could even be the fundamental
heuristic for subjects classified as “balancers.” Using
the argument in the introduction, one could claim that
these subjects took the sample of 10 as fundamental,
believing that it should be representative, and then
demanded enough consistency of their predictions to
make the mean of the sample of 9 consistent with their
answer for the mean of the sample of 10. On the other
hand, it is possible that subjects who give answers that
are consistent with a balancing solution think funda-
mentally differently about the problem from the way in
which subjects who give representativeness answers do.

We had hoped that in-depth analyses of the interview
videotapes would provide further insights into subjects’
heuristics. Unfortunately, audio problems with the
recording equipment made evaluating some protocols
extremely difficult. Accordingly, a second set of inter-
views was conducted with new equipment. In these
interviews, a relatively standardized set of probe ques-
tions was developed on the basis of an analysis of the
most informative probes used in the first set of inter-
views. The focus of the more standardized interviews
was to confront subjects with solutions different from
their own. We believed that information that would be
difficult to obtain from a more objective format could
be obtained from this confrontation. First, the strength
of subjects’ confidence in their answers could be as-
sessed. If they maintained their solutions after being
shown reasonable altematives, then one could conclude
that their original answers were not frivolous. Second,
since subjects were given only the alternative numerical
solutions and were asked what they thought the ration-
ale was for those solutions, their understanding of the
problem could be assessed more fully.

EXPERIMENT 2

Method

Subjects. The subjects were 26 students recruited from
undergraduate psychology classes who participated in the
experiments for extra credit. The interview of 1 subject, whose
data are not reported, was stopped in the middle because she
appeared to be very anxious in the interview situation.

Materials. The SAT problem was used for all subjects. For
Subjects 1-11, the problem was identical to the one ciFed in
Experiment 1. For subjects 12-25, the only difference in the
problem was that the first person sampled was said to have an
SAT score of 550 instead of 250 (correct answer = 415 for the
mean of the sample of 10).
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Procedure. The general interview procedure was the same as
that in Experiment 1. The subject read the first question, which
asked for the best guess for the mean of the sample of 10, and
answered it, being encouraged to think aloud as much as pos-
sible. After the subject’s answer, the interviewer asked for the
best guess for the mean of the sample of 9. Up to the point of
the subject’s answering this second question, the interviewer did
not intervene except to clarify parts of the problem on request,
to correct the subject if he or she misread the question, or to
encourage the subject to think aloud. The subject’s answer (as-
suming the first score was 250) was classified by the inter-
viewer as: (1) demonstrating the correct rationale (if the answers
to the questions were less than 400 and 400); (2) demonstrating
representativeness (if both answers were 400); or (3) demon-
strating balancing (if the answers were 400 and greater than 400).

The interviewer (Konold) then told the subject that the
problem had been given to many other students and that he was
going to present some answers that other students had given. The
subject was presented with one of the two patterns of answers
that he or she had not given and was asked to comment on it.
The subject was then provided with the remaining pattern and
asked to comment on that. For example, if a subject gave 400
as the answer to both questions, he or she would be classified as
“representative.” The interviewer would then say that some
people had answered that the best guess for the mean of 10 was
less than 400 while the best guess for the mean of 9 was 400
(i.e., the correct solution). The subject was asked if he or she
could figure out how someone would have arrived at such an
answer, and then was asked what he or she thought of the
answer. In the next segment, the interviewer said that some
subjects’ best guess for the mean of the sample of 10 was 400,
while for the sample of 9 it was greater than 400 (the balancing
solution). The same series of questions ensued. At the end, the
interviewer asked the subject explicitly what the best answer to
the question was. (The suggestion that subjects might want to
reconsider their original answer is, of course, implicit in pre-
senting alternative answers.) The order of presentation of the
two patterns of alternative answers was approximately counter-
balanced over subjects. Analogously, subjects who gave the
correct solution were presented with the representative and
balancing solutions, and the balancers were given the correct
and representative solutions. (One subject who demonstrated the
“trend” strategy and one whose original answer was confusing
were given all three alternative patterns.) The correct answer
was never identified as such.

The SAT problem was part of a 1-h-long interview that
included several other statistics problems. For Subjects 1-11, the
SAT problem was the first problem in the interview, and for
Subjects 12-25, it was the third or fourth. The interview on this
problem lasted about 10 to 15 min.

Results and Discussion

As described above, the interview consisted of two
parts. In the first, the interviewer assumed a passive
role, allowing the subjects to independently arrive at
answers. In a few cases, the subjects gave more than
one answer and seemed undecided about which was
correct. Accordingly, two answers are considered in the
subsequent discussion. The first is the answer that the
subject settled on before the experimenter presented
the alternative solutions; the second is the answer that
the subject settled on at the end of the interview.

Many subjects hedged their numerical answers with
the qualifier “about” or with numerical ranges (see
later discussion). Because we were concerned that the
subjects might view a best guess of 415 as “about”
400, the interviewer specifically asked these subjects
whether the mean would be any more likely to be above



or below 400. An answer was coded as “400” only if
the subject thought that there was no tendency in
either direction.

Final solution before intervention. The results closely
replicated those of Experiment 1 (see Table 2). The
final answers subjects gave before the second phase
of the interview are referred to as ‘‘Answer No. 1.”
The representative solution was again the modal re-
sponse (56%), whereas 20% chose the correct solu-
tion, 12% chose the balancing solution, 4% chose a
“trend’” answer, and 8% of the responses fell into
an unclassified category (see Table 2). The two un-
classified subjects will not be discussed further. One
did not appear to understand the question, and the
other had several fairly incoherent approaches to the
problem, making it impossible to determine what he
really believed.

Reactions to alternative solutions. The most striking
aspect of the data is that the pattern of results at the end
of the interview (““Answer No. 2”) was not very differ-
ent from that before interviewer intervention (see
Table 2). There appeared to be a slight movement away
from representativeness and toward balancing. However,
of the 23 subjects of interest, only 4 changed their
answers as a result of considering the alternative solu-
tions. We can conclude that the representative answers
were not merely hasty answers to the problem, since
when confronted with the correct and balancing answers,
12 of the 14 subjects maintained their representative
answers. (The other 2 changed to balancing solutions,
1 subject changed from a correct solution to a balanc-
ing solution, and the trend subject changed to a balanc-
ing solution.) .

We also examined the subjects’ reactions to the
alternative solutions to determine how well they under-
stood them. As mentioned earlier, after the subjects had
been presented with an alternative solution, they were
asked how somebody might have arrived at that solu-
tion. On the basis of the subjects’ comments, under-
standing of the rationale for the alternative solution was
rated independently by two of the authors on a scale
from 1 (no understanding) to 10 (excellent understand-
ing). The correlation (r) between the two sets of ratings
was .75, and there were only seven cases in which the
ratings differed by more than three. As can be seen in
Table 3, a majority of subjects showed reasonable com-
prehension of alternative solutions. Of particular interest
is the fact that a majority of subjects who had given
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representative answers understood the balancing and
correct solutions.

Verbal expression of heuristics. Having classified the
subjects according to the numerical answer they gave, we
wished to explore the extent to which the subjects who
gave representative and balancing answers made verbal
comments consistent with these heuristics. Unfor-
tunately, few subjects made comments that indicated
that they had consciously adopted either heuristic. All
of the subjects were asked to explain their numerical
answers. Twenty-two of the 23 subjects of interest gave
at least one answer of 400. Eleven gave no clear rationale
for their answer of 400. Of the remaining 11, 2 gave
answers that strongly implicated representativeness,
for example, “this random sample is giving you some-
thing about the whole community, so it would still be
that [points to 400],” and 7 gave justifications that
suggested a representativeness heuristic, for example,
“if you made sure you were picking totally randomly,
it’s supposed to come up around the mean.” The other
two subjects gave an ‘“‘equal ignorance” argument,
consistent with either representativeness or balancing,
that is, that there was no reason to expect the sample
mean to be either higher or lower than the population
mean.

To try to find evidence for balancing heuristics, the
entire set of interviews was searched for any statement
suggestive of balancing. Only two subjects (one of whom
had a representative solution) gave what could be con-
strued as balancing rationales, saying either that there
were usually as many scores above the mean as below or
that there should be a higher score that would “com-
pensate” for the lower one. Thirteen additional subjects
did mention that there should be scores in the sample of
nine in the opposite direction from the known score,
but this statement was mentioned in passing or paired
with a statement that some scores would also be in the
same direction.

Also of interest was the possibility that subjects may
not have considered the implications of sampling from a
large population and consequently may have been con-
cemed about sampling without replacement. Only four
subjects made comments indicating that they had con-
sidered implications of the fact that sampling was done
without replacement, and in only one case did it seem to
be part of an eventual balancing solution. One subject
brought up the issue and then said it would not matter
as the population was large. Two others mentioned

Table 2
Frequency of Solution Types, Experiment 2

Position in Interview

Solution Type*

Correct Representative Balancing Trend Unclassified

Final answer before alternative solutions were presented (Answer No. 1)

Answer at end of interview (Answer No. 2)

5(20%) 14 (56%) 3(12%) 1(4%) 2(8%)
4(6%) 12(48%) 7(28%) O0(0% 2(8%)

*See Table 1 and text for an explanation of these labels,
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Table 3
Mean Understanding Scores for Subgroups of Subjects

Understanding of

Number of Representative Balancing Correct Overall
Answer No. 1 Subjects Mean SD Mean SD Mean SD Mean SD
Repregentative 14 6.75 3.28 6.28 2.70 6.52 2.81
Balancing 3 8.83 0.85 4.50 2.86 6.67 143
Correct 5 7.60 1.69 9.80 0.24 8.70 0.93

sampling without replacement only when they were
presented with the balancing answer and were asked to
hypothesize why other students may have given such
an answer,

Three subjects gave a “trend” answer initially, al-
though two spontaneously changed their answers. They
seemed to arrive at their estimates for the mean of the
nine scores through a quasi-Bayesian rationale in which
the divergent first score influenced their estimates of
the mean of the population. A related phenomenon was
the curious protestations of four subjects that the
discrepant score would not change the population
mean: for example, “Well, if they’ve determined that
mean from a large school district, then I would certainly
put a fair amount of faith in it, and 1 wouldn’t vary it
on just one drawing. I wouldn’t vary it on a sample of
10 either.” These statements all suggested that the
population mean was not fixed but that the sample
evidence was insufficient to alter their estimate of it.
It is possible that these seven subjects thought that
there was a larger, unstated, population of which the
school district was only a (possibly nonrandom) sample.

Consistency. The verbalizations of the subjects who
gave balancing answers thus showed little evidence that
they had more of a process view of random sampling than
those who gave representative answers. The two groups
appeared to differ chiefly in their beliefs about whether
the means of the samples should be consistent (i.e., that
the mean of the sample of 10 be equal to the weighted
average of the first score and the mean of the last nine
scores). When the subjects who gave correct answers
and those who gave balancing answers were shown the
representative answers, most immediately rejected them
with comments like “mathematically, it wouldn’t work
out,” or “if they knew anything about math, it [the
550 score] would increase the score [the average of 10] .”
All three subjects who gave a balancing answer gave a
clear rationale for rejecting the representative answer
on these grounds.

The representative answer may seem reasonable to
many subjects because the question asks for the best
guess of the means of two hypothetical random samples.
Subjects may believe that a lack of consistency is pos-
sible for hypothetical random samples, since a best guess
for the mean is not necessarily the mean of any partic-
ular set of scores. At the end of the interview, those of
Subjects 1-11 who gave a representative answer were

asked whether both means could be 400 if one was
dealing with observed scores. Only one said yes, and it
was not clear that she understood that the interviewer
was asking about actual scores. The others seemed to
believe that both means could not be 400 with actual
observations, but could if you were making predictions:
“Because I don’t know the actual mean of the sample.
This is probability, not fact”; “It seems like a contra-
diction, but I still think that the best guess is 400
because it’s random.” Although Subjects 12-25 were not
explicitly asked this question due to an error in pro-
cedure, many of them dealt with its implications at some
point, usually in responding to the balancing solution:
for example, “They think that the other nine will come
out to make it a perfect 400, but when you’re picking
samples, you’re not going to come out with an exact
figure.”

Many subjects showed discomfort in predicting a
single value for the mean of a sample. Some subjects
explicitly tied in variability or “randomness” with
justification of the representativeness answers; others
alluded to the “random” (i.e., indeterminate) nature of
the sample and/or remarked that individual scores or
even sample means “could be anything.” Thirteen of the
23 classified subjects preferred either to preface their
estimates of the sample means with hedges such as
‘‘about” or “‘around’’ or to give interval estimates.
However, only 7 of these gave a representative solution.

To summarize, most of the representativeness sub-
jects who were explicitly asked about consistency made
it clear that they realized that both means could not be
400 if they were means of actual scores. Other repre-
sentativeness subjects also commented that, because of
variability or randomness in the sampling process, it did
not have to work out neatly as in the balancing solu-
tion. Many of the subjects also showed discomfort with
giving point estimates, indicating that the variability
of the sampling process was very much on their minds
and suggesting that a best guess for the mean of a hypo-
thetical sample should not be treated the same as an
actual sample mean. This discomfort may reflect
Kahneman and Tversky’s (1972) second meaning of
representativeness (i.e., that a random sample should
reflect the sampling process): A sample mean must be
“random” and hence have considerable variability and
uncertainty associated with it. The point is not, of
course, that it is a misconception to be aware of the



variability of sample means. What may distinguish
experts from novices is that, for the expert, a best guess
and the variability of that guess are two separate con-
cepts, whereas the novice has difficulty making this
differentiation.

SUMMARY AND CONCLUSION

In the introduction, we raised the general question of
whether the tendency of subjects to ignore the known
score in giving the best guess for a sample mean was due
to a descriptive heuristic such as representativeness or to
a mechanistic one such as active balancing. In both
studies, the preponderance of subjects who thought that
the mean of the sample of 10 was the population mean
believed that the mean of the sample of 9 was also the
population mean—an answer incompatible with active
balancing.

The interviews indicate that, for most subjects, the
belief that the population mean was the best guess for
both sample means was deeply held: They continued
to believe that answer even after having been presented
with alternative solutions, and in spite of the fact that
they showed reasonably good comprehension of the
rationales underlying those solutions. Moreover, detailed
analysis of the subjects’ explanations of their answers
revealed little evidence for balancing imagery. The
interviews further suggested that the subjects considered
the representative answer reasonable, since they regarded
best guesses for the means of random samples differently
from the way in which they regarded means of known
scores. Moreover, many of the subjects seemed uneasy
about making a best guess for the mean of a random
sample. -

These results have some pedagogical implications.

RANDOM SAMPLING 401
Many textbooks in statistics that discuss the law of
large numbers attempt to dispel students’ belief in the
gambler’s fallacy. However, they assume that the basic
misconception students have is that of active balancing,
and they oppose this mechanism with a correct one
called “swamping,” wherein the large amount of sub-
sequent data swamps out the impact of the discrepant
score on the mean (e.g., Hays, 1981). OQur own attempts
to teach the swamping conceptualization have usually
proved unsuccessful. Qur research suggests that such an
approach is unfruitful because subjects do not have an
incorrect process mechanism; indeed, they have virtually
no mechanistic way of thinking about random samples.
To refute active balancing is to refute a belief that
students actually do not have, and this may confuse
them. Since students’ actual heuristic, representative-
ness, is so different in form from the appropriate mech-
anistic belief, it may not be easy to set up an appropriate
confrontation between the two systems to effect any
lasting change in students’ beliefs about random samples.
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