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Abstract

CONMAP:
INVESTIGATING NEW COMPUTER-BASED APPROACHES
TO ASSESSING CONCEPTUAL KNOWLEDGE STRUCTURE

IN PHYSICS

MAY 2000

IAN D. BEATTY, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor William J. Gerace

There is a growing consensus among educational researchers that traditional
problem-based assessments are not effective tools for diagnosing a student’s
knowledge state and for guiding pedagogical intervention, and that new tools
grounded in the results of cognitive science research are needed. The ConMap
(“Conceptual Mapping”) project, described in this dissertation, proposed and
investigated some novel methods for assessing the conceptual knowledge
structure of physics students.

A set of brief computer-administered tasks for eliciting students’ conceptual
associations was designed. The basic approach of the tasks was to elicit
spontaneous term associations from subjects by presenting them with a prompt
term, or problem, or topic area, and having them type a set of response terms.
Each response was recorded along with the time spent thinking of and typing it.

Several studies were conducted in which data was collected on introductory
physics students’ performance on the tasks. A detailed statistical description of
the data was compiled. Phenomenological characterization of the data
(description and statistical summary of observed patterns) provided insight into
the way students respond to the tasks, and discovered some notable features to
guide modeling efforts. Possible correlations were investigated, some among
different aspects of the ConMap data, others between aspects of the data and
students’ in-course exam scores. Several correlations were found which suggest
that the ConMap tasks can successfully reveal information about students’
knowledge structuring and level of expertise. Similarity was observed between
data from one of the tasks and results from a traditional concept map task.
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Two rudimentary quantitative models for the temporal aspects of student
performance on one of the tasks were constructed, one based on random
probability distributions and the other on a detailed deterministic representation
of conceptual knowledge structure. Both models were reasonably successful at
approximating the statistical behavior of a typical student’s data.
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1. Introduction
Physics education needs new assessment methods. Physics education

research, informed by cognitive science, must devise them. To accomplish this,
better models of physics student’s learning, knowing, and knowledge
application are required.

This dissertation describes and discusses an ongoing research effort called
the ConMap (“Conceptual Mapping”) project. The fundamental aim of the project
is to investigate the utility of a particular set of proposed assessment tools
— brief, computer-administered tasks for eliciting spontaneous conceptual
associations — for probing the quality and extent of a physics student’s
conceptual knowledge structure (CKS) in an introductory physics domain.

Section 1.1 presents the shortcomings of traditional, problem-based physics
assessments and notes the need for a suitable cognitive model of physics
knowing and learning in the construction of a better assessment approach.
Section 1.2 outlines the context of existing research in which the ConMap study
has been pursued. Section 1.3 identifies the goals of the ConMap project and
describes the organization of the remainder of this dissertation.

1.1. See the Need

1.1.1. The Inadequacy of Traditional Assessments
Traditionally, educators attempt to measure a student’s physics knowledge

by presenting the student with a set of problems to solve and grading the
student’s solutions. In situations where the time required for detailed grading is
prohibitive, machine-graded multiple-choice problems are typically given. A
student who can solve a sufficient fraction of the problems is considered to have
“learned” the material adequately.

Appropriately-chosen problems can provide a reasonable measure of a
student’s ability to “do” physics, if doing physics is defined as being able to solve
problems of the sort assigned. Many physics instructors, however, assert a more
ambitious goal: they want to help students develop a conceptual understanding
of the topic material, qualitative reasoning abilities, transfer of knowledge to
different contexts, and the general capabilities of “thinking like a physicist”.
Traditional problem-based exams fail to test for the success of these objectives.
According to Robert J. Mislevy of the Educational Testing Service (Mislevy 1993),

Educational measurement faces today a crisis that would appear to threaten its
very foundations. The essential problem is that the view of human abilities
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implicit in standard test theory… is incompatible with the view rapidly emerging
from cognitive and educational psychology. Learners increase their competence
not only by simply accumulating new facts and skills, but by reconfiguring their
knowledge structures, by automating procedures and chunking information to
reduce memory loads, and by developing strategies and models that tell them
when and how facts and skills are relevant. The types of observations and the
patterns in data that reflect the ways that students think, perform, and learn
cannot be accommodated by traditional models and methods.

Furthermore, traditional problem-based exams provide little information
about why a particular student failed on the particular problems he or she did not
get right, and even less about what specific pedagogic interventions the
instructor should employ to help the student resolve their difficulties. There are
many reasons why a student might fail to solve a problem correctly. Among
them:

• Failure to interpret the problem situation as the assessor intended;

• Insufficient or incorrect physical intuition to understand what is
happening in the problem situation;

• Ignorance of the necessary principle;

• Failure to recognize the correct principle;

• Conceptual mistake during application of the correct principle;

• Cognitive overload: general confusion and failure to keep track of
enough information and lines of thought;

• Algebraic error during calculations;

• Numerical error or calculator keypress error;

• Error determining units or powers of ten;

• Failure to answer the precise question being asked.

If a student’s written solutions are hand-graded, it might be possible to identify
the point at which the student went awry. Even then, the reason for the mistake
— the underlying misconception, missing piece of information or insight, etc. —
can only be guessed at. This is complicated by the fact that students frequently
make “careless errors” caused by the failure to apply knowledge they have,
rather than by missing knowledge.
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Kikumi K. Tatsuoka of the Educational Testing Service, a pioneer in
statistical pattern recognition and classification approaches to the interpretation
of standard problem-based test results, admits:

The problem of cognitive diagnosis has an additional difficulty [beyond
statistical decision theory], because cognitive processes that should be extracted
as feature variables are not observable, and knowledge states as classification
categories cannot be obtained directly from observations.

In other words, a student’s “knowledge state” cannot be obtained directly from
his or her exam performance.

In short, traditional problem-based exams have limited evaluative value and
even more limited diagnostic value. They might be capable of providing a crude
measure of student competence, narrowly defined, but are insufficient for
diagnosing specific weaknesses in a student’s knowledge and are therefore
insufficient to guide an instructor in remediation.

1.1.2. Alternative Assessments
The field of physics education research (PER) has made significant advances

in physics pedagogy, providing a fundamentally new perspective on the role of
the instructor in the learning process and developing many new and
demonstrably efficacious teaching tools (Larkin 1979; Mestre and Touger 1989;
Mestre 1991; Gerace 1992; Redish 1994; Gerace, Leonard et al. 1997; McDermott
and Redish 1999). The progress made on the development of new assessment
methodologies has been less dramatic, perhaps because the “assessment
problem” is more difficult than the “instruction problem”. Nevertheless, some
progress has been made.

If one wishes to assess a student’s “knowledge state”, rather than merely
summarize the parts of the assessment the student did and didn’t succeed at, it is
obvious that one needs a model of what a knowledge state is and how it is
probed by the assessment. Thus, the development of assessment methodologies
must be founded on the results of cognitive science research into physics
knowledge, learning, and task performance. In particular, an effective diagnostic
assessment must describe a student with reference to some suitably detailed
model of physics knowing, learning, and application.

Physics education research has provided general qualitative descriptions of
knowledge structuring in physics, and cognitive science has furnished detailed
models of limited aspects of learning and knowledge application. Despite
significant recent progress, however, no sufficiently specific model of knowledge
structuring and accessing exists now which can serve as a basis for detailed
diagnostic assessment of conceptual understanding.
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1.2. Understand the Need
This section provides a brief outline of research that has been conducted into

the nature of physics knowledge, the development of student models, and
attempts at developing new assessment approaches. The purpose of the review is
to set the context for the ConMap study, not to provide a comprehensive
bibliography. It is a difficulty of the field that relevant research is scattered
among disparate disciplines like physics, cognitive science, psychology,
education, computer science, and neurobiology, so the references contained in
this review should be taken as a representative sampling rather than a
comprehensive bibliography. Further references can be found within the
referred-to papers.

1.2.1. Research on Knowledge Structure
It has been said that “knowledge representation is one of the thorniest issues

in cognitive science” (Anderson 1993). Much of the thorniness is concerned with
the details of knowledge representation at its lower, more primitive levels: the
microscopic “constituents” of knowledge. At higher levels, some general
perspectives have emerged on how physics domain knowledge should be
represented.

Cognitive scientists make a distinction between two fundamental types of
knowledge: declarative and procedural (Anderson 1993). In essence, declarative
knowledge is explicit knowledge of facts, which can be stated or reported;
procedural knowledge is tacit knowledge of how to perform operations, which
can be demonstrated but not stated. Knowing that force is equal to the product of
mass and acceleration is declarative knowledge; knowing how to draw a free-
body diagram is procedural, although the individual might also know several
declarative facts about how free-body diagrams ought to be drawn. Frequently,
knowledge is acquired first as declarative elements which are consciously
consulted to carry out operations. With practice and repetition, those operations
become automated as procedural elements, and the declarative elements are no
longer required. With time, declarative elements may atrophy.

Physics knowledge involves both declarative and procedural components
interacting. Most research to date on the nature of physics knowledge structure
has investigated declarative knowledge, probably because it is easier to probe.
Studies on physics experts’ and novices’ problem-solving behavior suggest that
at least within the domain of physics, declarative knowledge can be represented
as divided into four general, approximate categories (Larkin 1979; Chi, Feltovich
et al. 1981; Gerace 1992; Mestre, Dufresne et al. 1993; Gerace, Leonard et al. 1997):
conceptual knowledge, operational and procedural knowledge, problem-state
knowledge, and strategic knowledge. (The category of “operational and
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procedural” knowledge refers to declarative knowledge about physics
operations and procedures, as distinct from automated, non-declarative
“procedural knowledge”. The choice of terminology is unfortunate, especially
since many operational skills have both declarative and procedural components.)
Figure 1.1 depicts a representation of an expert’s knowledge store, omitting
strategic knowledge.

Bi-directional links
between elements

and clusters
Operational and

Procedural Knowledge
Conceptual
Knowledge

Problem-State
Knowledge

Rich
clustering;
hierarchical
arrangement

Strong, bi-directional
concept-based links

Figure 1.1: Graphic depiction of a physics expert’s declarative knowledge store,
showing conceptual, operational/procedural, and problem-state knowledge
(Gerace, Leonard et al. 1997).

Characteristics of the physics knowledge store of importance to mastery of
the domain are brought to light by comparisons between experts and novices
thinking and problem-solving. Table 1.1 lists the main differences between
experts’ and novices’ knowledge characteristics based on such studies.

Several studies have revealed that experts and novices are distinguished not
just by the content of their knowledge stores, but by the organization
(Zajchowski and Martin 1993): one needs contextually-appropriate access to, not
just possession of, knowledge (Redish 1994); it is the structure of interconnections
between knowledge elements which allows such access (Mestre and Touger
1989); and expert’s knowledge is structured around key principles (Hardiman,
Dufresne et al. 1989).

These findings suggest that for purposes of assessing students’ degree of
expertise with respect to a physics topic, a model is required that describes
students’ declarative knowledge state in terms of the knowledge elements
present and especially the structure of interconnections between those elements.
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Expert Novice

Store of domain-specific knowledge Sparse knowledge set

Knowledge richly interconnected Knowledge mostly disconnected and
amorphous

Knowledge hierarchically structured Knowledge stored chronologically

Integrated multiple representations Poorly formed and unrelated
representations

Good recall Poor recall

Table 1.1: Summary of the main differences between experts’ and novices’
declarative knowledge characteristics, from expert-novice problem-solving
studies (Gerace, Leonard et al. 1997).

1.2.2. Research on Cognitive Modeling
A variety of knowledge models have been constructed by the cognitive

science community, for such domains as physics, computer programming, chess,
land navigation, maintenance of aircraft hydraulic systems, and electronic circuit
design (Chipman, Nichols et al. 1995). These models tend to fall into two distinct
categories: network models of declarative knowledge and rule-based models of
procedural knowledge.

Semantic networks are the classic network model of knowledge (Bara 1995),
originally developed for the analysis of natural language. A semantic network
consists of a set of nodes interconnected by labeled, oriented links. The nodes
typically represent concepts. The links represent relationships between the
nodes, with a label describing the nature of the relationship. The links are
oriented so that asymmetric relationships may be described. Figure 1.2 displays
an example of a small semantic network.

The primary difficulty with semantic networks as knowledge models is that
they are tremendously general: without specific rules to limit the labels allowed
on links, almost any degree of conceptual complexity can be buried within a
creative choice of label. Consider, for example, the number and subtlety of
concepts subsumed in the simple declarative statement “Newton’s laws describe
force” from Figure 1.2. Nevertheless, semantic networks do capture the general
idea that declarative knowledge, or at least the conceptual part of it, gets its
meaning from the interrelationships between conceptual elements.

Artificial neural networks (ANNs) form a class of models superficially similar
to semantic networks, but with a very different origin and intent (McClelland
and Rumelhart 1986; Hertz, Krogh et al. 1991; Watkin and Rau 1993). Inspired by
the neurobiological functioning of the brain, ANNs were developed as an
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alternative computational paradigm to the traditional one where a single,
complex processor executes one instruction at a time from a very large sequence
of such instructions (a program). In the ANN paradigm, a large number of simple,
identical processing elements (nodes, analogous to neurons) are interconnected
by links (analogous to synapses) of varying strengths. The dynamics of the
system is determined by the strengths of the links, and can be very complex.

force

acceleration
Newton's laws

friction

kinetic

static

no sliding

sliding

Fs ≤ µsN

position

velocity

Fk = µkN

describe

causes derivative of

derivative of

type of

type oftype ofcondition for

condition for

describes

describes

Figure 1.2: Example of a (partial) semantic network for concepts related to
“friction”.

Like a semantic network, an ANN consists of nodes interconnected by
directed links. Unlike a semantic network, no explicit meaning is assigned to the
nodes or links of an ANN; any meaning to the network’s components and
behavior must be assigned by some observer, and is not part of the model. The
most significant difference between the two, however, is that semantic networks
are static descriptions and ANNs have dynamics. That is, they have a state which
evolves in time. The state of the network can be described by the subset of nodes
which are in an “active” state (analogous to a neuron firing). The dynamics of
each node and the set of links and link strengths determine which nodes become
active or cease being active as time progresses.

Most research on applications of ANNs to cognition has concentrated on
modeling of very specific, low-level neural and cognitive processes like
associative recall (Hopfield 1982; Hopfield 1984), visual processing (Bialek and
Zee 1988; Kohonen 1993), short-term memory (Lisman and Idiart 1995), and
behaviorist stimulus-response training (Donahoe, Burgos et al. 1993). Some
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attempts to construct models of larger, multiple-function systems have been
made, but they more resemble electronic circuit design than cognitive modeling
(Trehub 1991) and still describe a low level of neural detail. A stumbling block in
the application of ANN models to practical physics education research is that
ANN dynamics does not itself describe observable behavior, but needs to be
connected to observable behavior by additional model constructs.

In contrast to the network-based knowledge models are the rule-based
models, most of which are termed production systems. These models describe
procedural knowledge as a large set of simple if-then rules that act in concert to
describe decision-making and action. The most complete and well-developed
such model (Chipman, Nichols et al. 1995) is probably John R. Anderson’s ACT-
R system (Anderson 1993; Corbett, Anderson et al. 1995). ACT-R is a complete,
runnable model implemented on a computer, capable of modeling computer
programming, game-playing, and some other skilled pursuits for which rule sets
have been developed. It has been used with some success as the basis for
intelligent tutoring systems.

Although ACT-R’s focus is procedural knowledge, it contains an ANN-style
component to model declarative knowledge. The model’s primary practical
limitation is the amount of effort required to apply the model to a new domain
like problem-solving in introductory physics, because the set of rules for a
domain must be carefully crafted and tested. In contrast, John H. Holland’s
Classifier System models (Holland, Holyoak et al. 1986; Holland 1990) incorporate
a dynamic for evolving the rule set according to external reinforcement, so that
the rule set may be “trained” through trial and error. Classifier systems therefore
attempt to model learning, whereas production systems like ACT-R model
knowledge application.

Taking a more ad-hoc approach, Martin and VanLehn (Martin and VanLehn
1995) have attempted to develop a computerized physics assessment tool named
OLAE which models students by inferring which of a large library of physics
knowledge “rules” they know. The library is static and predesigned, and
contains incorrect as well as correct “knowledge”. Unlike production systems
and classifier systems, the model is purely descriptive and has no dynamics.

1.2.3. Research on Assessment
A major realm of assessment research, called psychometric test theory, aims to

extract more complete, detailed, and reliable information from traditional
problem-based exams (Mislevy 1993; Corter 1995; Tatsuoka 1995). This approach
applies sophisticated statistical analysis to the selection of test problems and to
the investigation of patterns in a population of students’ results. It has some
implications for cognitive science because analysis of a population’s test results
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can reveal the atomic psychometric attributes which serve as the cognitive elements
that individual students either do or do not know. Psychometric attributes are
purely empirical entities, revealed via statistics and not based on any a priori
cognitive perspective; as such, they may serve to guide efforts in cognitive
model-building for a domain. However, because its intent is to devise tests which
discriminate between students for the purposes of evaluation and ranking, the
theory focuses on differences between individuals rather than on their
commonalties. Information about the commonalties would be most useful for the
construction of cognitive models.

Psychometric testing is essentially nothing more than traditional exam
preparation and interpretation stretched to its limits. Although the statistical
techniques developed are likely to be useful for other kinds of assessment,
nothing qualitatively new is offered.

The alternative to traditional exams with psychometric analysis is loosely
termed cognitive test theory, because it builds on the results and models of
cognitive science (Chipman, Nichols et al. 1995). Assessment methods within this
category generally posit a knowledge model, and attempt to elicit or probe
information about a student’s knowledge structure within the framework
defined by that model. If a network-based model like a semantic network is
assumed, assessment instruments and analyses are developed to infer a student’s
set of concepts and inter-concept connections. If a rule-based model like a
production system is assumed, assessment instruments and analyses attempt to
identify, perhaps probabilistically, the subset of rules within the model that the
student “knows”.

For assessment of declarative knowledge, assuming a network model of
knowledge structure, approaches can be categorized as either direct or inferred.
The classic direct approach is the concept map task, in which a student is asked to
draw a nodes-and-links representation of his or her understanding of a domain
topic area (Novak and Gowin 1984). The resulting map is taken as a description,
perhaps partial, of the student’s declarative knowledge structure for the subject.
Many variants of the task have been developed and investigated (Ruiz-Primo
and Shavelson 1996). Sometimes subjects are asked to draw the entire map
without assistance, with labeled or unlabeled links; sometimes they are given a
set of terms to arrange into a map; sometimes a partial map is given and they are
asked to fill in the remainder; sometimes a complete map without link labels is
presented and subjects are asked to label all links. Scoring systems also vary
widely, with credit given for the number of nodes, the number of links, the
number of nodes or links deemed “relevant”, the degree of similarity to a
reference map, or some combination of these possibilities.
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In general, research has found concept map assessments can be generally
valid, in the sense that scores appropriately derived from students’ concept maps
tend to correlate with other, trusted indicators of student domain mastery
(Young 1993; Ruiz-Primo and Shavelson 1996; Rice, Ryan et al. 1998). Instructors
and researchers employing concept map assessments have also found that such
assessments tend to be tedious and time-consuming to administer and to score
and analyze, rendering them poorly suited for mass adoption by educators
(Regis, Albertazzi et al. 1996; Ruiz-Primo and Shavelson 1996). Some researchers
have implemented concept map assessments by computer and automated the
scoring procedures (Ju 1989), but so far no widely adopted assessment tools have
resulted, perhaps because of doubts about the reliability of the scoring protocols
chosen.

Regardless of whether concept map tasks can be developed into useful
assessment methodologies to supplement traditional exams, they have shown
great promise as pedagogic tools (Cliburn 1990) and research instruments
(Nakhleh 1994; Trowbridge and Wandersee 1996).

Whether or not students are capable of drawing a concept map that
accurately describes their actual knowledge structure is open to significant
doubt. One likely reason why the answer might be negative is that drawing a
concept map is a time-consuming and attention-intensive activity, and a student
is unlikely to be able to draw a map of any completeness for more than a very
small set of concepts. In an attempt to probe students’ domain knowledge more
thoroughly, and to capture information about the relative strengths of inter-
concept links as well as the presence or absence of such links, inferred
approaches to declarative knowledge assessment have been developed. Inferred
approaches typically follow a three-step paradigm (Goldsmith, Johnson et al.
1991):

1. Elicit raw data on knowledge structure via some kind of association-
probing task;

2. Re-represent that data to reveal the underlying organization imposed
by the student;

3. Evaluate this representation according to the assessment’s objectives.

Association-probing tasks that have been used for step 1 include:

• Sorting tasks, such as partitioning a set of items into categories and sub-
categories (Konold and Bates 1982);
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• word association, in which subjects reply to a prompt term with
whatever term comes to mind (Johnson 1964; Cooke, Durso et al. 1986);

• term proximities in free prose responses, in which subjects write essay-
style responses to questions, and the average distances between various
pairs of relevant words are calculated (Miyamoto, Suga et al. 1990); and

• item relatedness judgments, in which subjects are presented with pairs
of items (typically words or terms) and asked to rate the relatedness of
each pair on a numerical scale (Goldsmith, Johnson et al. 1991;
Gonzalvo, Cañas et al. 1994).

Typically, the data from step 1 consists of a matrix of numbers which represent
the relatedness of every pair of items in the task. For an item relatedness
judgment task, these numbers might be the rating given to each pair by the
subject; for other tasks, some calculation might be necessary to arrive at a matrix
representation. Two general re-representation techniques are common for step 2:
scaling procedures and network-construction algorithms. A scaling procedure
interprets the matrix numbers as measures of distance (perhaps the inverse of
distance), conceives of the items as occupying a point in a multidimensional
space, and analyzes the distribution of the points in that space (Cooke, Durso et
al. 1986; ter Braak 1995). Cluster analysis is a scaling procedure which groups the
items into clusters, and then into clusters of clusters, and so on based on their
relative distances in the space. Multidimensional scaling is a different scaling
procedure which attempts to find the minimum dimensionality space necessary
to adequately embed the items, preserving their relative proximities, and then
enable attribution of meaning to each of the dimensions (Goldsmith, Johnson et
al. 1991; Gonzalvo, Cañas et al. 1994; Johnson, Goldsmith et al. 1995). Scaling
procedures are sometimes applied to the aggregated data of an entire population
rather than of individuals (Mashhadi and Woolnough 1996), although its value
for individual assessment is then lost.

Rather than representing items as points embedded in a multidimensional
space, network-construction algorithms attempt to represent items as a network
of nodes, assigning link strengths consistent with the proximity matrix values.
The most common algorithm is the Pathfinder algorithm (Cooke, Durso et al.
1986; Goldsmith, Johnson et al. 1991; Gonzalvo, Cañas et al. 1994; Johnson,
Goldsmith et al. 1995), although others have been used (Britton and Tidwell
1995). Network representations tend to be easier to interpret than scaling
representations, and they have the advantage that they reveal but do not impose
a hierarchical organization of the items. Cluster analysis, on the other hand,
imposes such an organization regardless of the data.
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The methods used for step 3 of the inferred approach, evaluation of the re-
represented data, depends on the specific goals of the assessment. Qualitative
judgments by domain experts may be used. It is common to compare the
generated network or scaling procedure result to a reference network or
embedding determined from a panel of experts, and define various quantitative
measures of the degree of similarity (Goldsmith, Johnson et al. 1991; Gonzalvo,
Cañas et al. 1994; Johnson, Goldsmith et al. 1995). If a network-construction
algorithm has been employed, the problem of evaluation is now similar to that
for explicitly-drawn concept maps, and techniques developed for that problem
may be employed.

Overall, investigations into the validity of inferred approaches to declarative
knowledge structure assessment have been generally positive: measures
comparing the similarity of students’ derived structures (networks or scaling
procedure results) to experts’ referent structures correlate significantly, but not
completely, with more traditional measures of domain mastery (Goldsmith,
Johnson et al. 1991; Gonzalvo, Cañas et al. 1994; Johnson, Goldsmith et al. 1995).
Much of the research concerns itself with what comparison measures, or
combination of comparison measures, produces the cleanest correlation. Some
studies suggest that network-construction algorithms and scaling procedures are
sensitive to somewhat different and complementary aspects of knowledge
organization, and that a combination of the two approaches is more reliable than
either alone.

Researchers who adopt a rule-based model of knowledge employ very
different assessment methods. Since rule-based models describe tacit procedural
knowledge rather than introspectively accessible declarative knowledge, they
must observe the task performance of subjects engaged in activity, and infer from
observations the rule set responsible for the performance (Martin and VanLehn
1995; Mislevy 1995). Typically, a “rule space” is defined, representing all possible
knowledge states that a subject might have with respect to a specified set of rules
— that is, every possible combination of knowing some rules and not knowing
others. Bayesian inference methods are then applied to assign, based on the
subject’s observed behavior, a probability to each point in the rules space
describing the likelihood that that point describes the subject’s state of
knowledge. In practice, such calculations are numerically very intensive, and
much of the research surrounding such assessment methods aims to find
algorithms for reducing the complexity of the calculations to manageable levels.

When applied to relatively simple models of skill application in relatively
limited domains, Bayesian inference assessment methods have proven to be
successful enough to incorporate into intelligent tutoring systems. The
immediate limitation which prevents their utility for more ambitious rule-based
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models of larger domains, such as physics problem solving, seems to be the
numerical complexity of the calculations required for the Bayesian inference.
Much of the research surrounding such assessment methods aims to find
algorithms for reducing the complexity of the calculations to manageable levels,
and as affordable computers become ever more powerful, this limitation should
recede.

1.3. Meet the Need
It has been argued that physics education needs new assessment methods,

and that new assessments must be based on better models of physics learning
and expertise than are currently available. It is also true that the development of
better models depends upon data derived from appropriate assessment
techniques. This is the same “chicken and egg” problem as confronts physics
research: theory both depends upon and guides experiment, as depicted in
Figure 1.3.

probe
design
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data
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Figure 1.3: Interrelationships between the design of an experimental probe, the
data gathered and the model constructed.

In mature research fields, focusing on one stage at a time — designing a
better experimental probe, for example, or revising a model — is possible and
generally recommended. In a newly emerging field, however, wherein
researchers are still struggling to determine what the measurable and modelable
quantities might be and how they ought to be represented, the three stages
cannot be separated so cleanly. One’s model of the system being studied, as
preliminary and vague as it might be, guides the design of an experimental
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probe, and analysis of the data provided by that probe continuously modifies the
model; at the same time, a viable model provides an interpretation to the data,
and interpretable data validates the probe design used.

With this in mind, the following interrelated goals were set for the ConMap
project:

1. Devise and test possible strategies for probing physics students’
knowledge structures (probe design);

2. Search for potentially meaningful patterns and correlations in data
provided by the probes (data analysis); and

3. Develop quantitative models of knowledge structure and access
consistent with the gathered data (modeling).

 Chapter 2 describes the design of the ConMap tasks (probes) devised, and the
design of the research studies which investigated the application of those probes
to physics students. Chapter 3 presents extensive analysis of the data from those
studies. Chapter 4 describes some preliminary attempts at constructing
quantitative models for a physics student’s performance on the tasks. Finally,
Chapter 5 summarizes and discusses the findings of the study.

Two important characteristics of the research should be borne in mind. First,
the ConMap project represents an initial, exploratory foray into conceptual
knowledge assessment and modeling in physics. As such, trying a variety of
approaches and possibilities was given higher priority than performing a
thorough, well-controlled test of a few hypotheses. Subsequent research to follow
up any interesting findings has always been intended.

Second, the project was directed towards quantitative measures and models.
Although some qualitative analysis is inevitable when dealing with concepts and
similar difficult-to-quantify entities, it was a goal of the project to bring as
quantitative and physics-like as possible an approach to physics education
research. A great deal of potentially fascinating qualitative analysis of the data
was therefore eschewed in favor of the search for revealing quantitative
measures and correlations.
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2. ConMap Design
Section 2.1 of this chapter presents the design of the ConMap tasks, the

experimental “probes” being investigated for their utility for assessing physics
students’ knowledge structures. Section 2.2 describes the ConMap studies, in
which the designed tasks were presented to physics students and task results
were gathered. Section 2.3 presents some reflections on the task and study
designs, based on the administrators’ experiences conducting the studies (not on
analysis of the resulting data).

2.1. ConMap Tasks

2.1.1. Design Objectives
As stated in Chapter 1, the intent of the ConMap project is to investigate the

utility of a particular set of proposed assessment tools — brief, computer-
administered tasks for eliciting spontaneous conceptual associations — for
probing the quality and extent of a physics student’s conceptual knowledge
structure (CKS) in an introductory physics domain.

Ultimately, an ideal assessment task would provide a complete “map” of a
student’s knowledge structure, indicating connections that ought to be present
for expert-like knowledge but were not, and connections that existed but should
not (misconceptions). With such a student-specific map, an instructor could
design specific pedagogic activities to benefit that student. More modestly and
immediately, one might hope to develop assessment measures which
characterize general qualities of a student’s knowledge structure: how extensive
it is, whether it is richly or sparsely interconnected, whether the organizational
scheme is haphazard or systematic, and so on. The ConMap tasks were designed
with both the ultimate and immediate goals in mind.

Why elicit conceptual associations? As discussed in Subsection 1.2.1, it is
believed that a major component of domain expertise in physics is the possession
of a richly interconnected, hierarchically organized network of associated
concepts. A primary goal of physics instruction is to facilitate a learner’s
development of such a conceptual “understanding”. ConMap tasks were
therefore designed to elicit, as directly as possible, information on a subject’s
possession of concepts and inter-concept associations.

Why elicit spontaneous conceptual associations? It was desired that the tasks
probe conceptual associations that were “readily accessible” to the subject, in the
belief that such associations represent the automated knowledge inherent in the
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subject’s knowledge structure. Therefore, task designs in which a subject was
asked to reflect upon his or her conceptual associations were avoided, in favor
tasks eliciting spontaneous associations. An additional consideration was that
tasks involving a subject’s considered judgments on his or her associations can
confound measurement of the actual knowledge structure with measurement of
the subject’s introspective abilities and inventiveness. (Hand-drawn concept
maps, which do not address spontaneous associations, were included in the
study for comparison purposes.)

Why use computer-administered tasks? ConMap is not primarily intended to be
abstract cognitive science research, but rather a step towards the development of
new, practical assessment methods which are grounded in cognitive science
findings. It is hoped that the tasks developed or their offspring may ultimately
have practical value to educators by providing meaningful and timely diagnosis
of students. If the tasks are not easy to administer and evaluate, they will not be
useful.

Why use brief tasks? The first practical use of such tasks would likely be for
ongoing diagnostic assessment during a course of instruction, rather than for
occasional comprehensive evaluations. The tasks must therefore be relatively
brief and non-demanding. This rules out more comprehensive, detailed, and
thorough tasks of the types often employed for cognitive science research.

2.1.2. Terms as Concepts
In order to probe the conceptual portion of declarative knowledge, most of

the ConMap tasks attempt to elicit subject’s associations between terms. The
focus is on terms rather than on equations, propositions, or other kinds of entities
because terms seem to be the closest accessible approximation to “conceptual
building blocks”. This study is not concerned with the underlying cognitive
nature of such building blocks, or with the neurological details of their
representation, storage, and retrieval.

It has proven difficult to rigorously define term. When instructing subjects, a
term was loosely defined to be one or perhaps two or three words describing one
concept, idea, or thing. Some examples of terms drawn from introductory
mechanics are:

• kinematics

• Newton’s first law

• velocity

• pulley
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• second

• impulse-momentum theorem

• problem-solving

Statements like “energy is conserved in an elastic collision” were not
considered to be terms, but rather propositions involving multiple terms and
their relationship. “Conservation of energy”, on the other hand, would be
accepted as a term, since it serves as a name for a physics concept. In practice, the
line between single-concept terms and compound statements of relationship is
not well-defined, and subjects frequently wandered dismayingly far over it.

2.1.3. The Specific Tasks
The ConMap tasks were developed with the intention of probing the set of

terms and inter-term associations that constitute the conceptual portion of a
subject’s declarative knowledge store for a domain. Each task was intended to
elicit a somewhat different aspect of that knowledge store. The following
subsubsections describe the tasks that were developed and investigated.

2.1.3.1. Free Term Entry (FTE)
For the Free Term Entry (FTE) task, subjects are given a general topic area like

“introductory mechanics” or “the material covered in Physics 151”. They are
asked to think of terms that they associate with this topic area, spontaneously
and without strategy, and to type these terms into a dialog box (shown in
Figure 2.1) as the terms come to mind. When each term is completed, the subject
presses the “return” key on the keyboard (equivalent to clicking on the “Enter”
button in the dialog box), and the typed term disappears, leaving the typing box
empty and ready for a new term.

Figure 2.1: Term entry dialog box for the FTE task.
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The data gathered consist of the list of terms in the order they were entered,
together with the time at which typing began for each term (the moment at
which the first character was typed into an empty field), and the time at which
each term was entered (the moment at which the return key or “Enter” button
was pressed). The task runs for a specified total duration, typically 20 to 45
minutes, before terminating.

This task was intended to explore the space of terms constituting a subject’s
active vocabulary of concept-describing terms for the topic area, without
influencing the responses by providing terms through external prompting. The
result was conceptualized as a kind of “random walk” through the space of a
subject’s active vocabulary. It was hoped that the duration of pauses between
term entries, and the grouping of term entries into clusters separated by longer
fallow periods, might reveal some information about what terms a subject
associates closely. Since the list of terms and times comprising a FTE data set
forms a one-dimensional series, and the space of conceptual knowledge elements
and their interconnections requires two dimensions to represent (for example, as
a matrix of connection strengths), it was clear from the beginning that the FTE
task can never provide a complete probe of a subject’s conceptual
interconnections. Nevertheless, it was a first attempt at exploring the space. In
addition, it was hoped that overall statistical patterns in a subject’s FTE data
might reveal global aspects of his or her knowledge and cognition, perhaps
serving as bulk measures in much the way that thermodynamic quantities like
temperature and pressure characterize global statistical aspects of a collection of
microscopic particles.

2.1.3.2. Term-Prompted Term Entry (TPTE)
For the Term-Prompted Term Entry (TPTE) task, subjects are given a prompt

term. They are asked to think of terms they consider related to this prompt term,
spontaneously and without strategy, and to type these terms into a dialog box
(shown in Figure 2.2) as the terms come to mind. The prompt term stays visible
throughout, and typed terms disappear from view as they are entered. Data
gathered is the same list of terms, term start times, and term entering times as for
the FTE task. The process repeats for several different prompt terms.

Several schemes for terminating a subject’s entering of response terms have
been considered. In initial trials, a subject’s entering of response terms was
terminated the first time ten seconds of inactivity was detected while the term-
entry field was empty, on the assumption that this indicated the subject was
having difficulty thinking of another relevant term to enter. The task would also
be terminated after the tenth response term entry. For later trials, the task was
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terminated by the same criteria, except that the task would not terminate until at
least three terms had been entered.

The TPTE task was intended to explore subjects’ conceptual associations in a
more focused and directed way than the FTE task allows, eliciting the strongest
associations a subject has with a particular prompt term. A mode of operation
envisioned (but not implemented in any studies to date) was to first give a
subject the FTE task on a topic, and then use the set of responses gathered as
TPTE prompt terms to fill out a web of connections between those terms. It was
hoped that such a procedure might allow computer-based elicitation and
construction of a “concept map” representation of a subject’s knowledge of a
topic, in a manner more spontaneous and therefore presumably more genuine
than occurs for traditional hand-drawn concept map tasks.

Figure 2.2: Term entry dialog for the TPTE task.

2.1.3.3. Problem-Prompted Term Entry (PPTE)
The Problem-Prompted Term Entry (PPTE) task is identical to the TPTE task,

except that instead of being prompted with a term, subjects are directed to read
the description of a problem or problem situation. Subjects then enter terms they
associate with the problem in a dialog box (see Figure 2.3). The process is
repeated for several prompt problems. In all studies to date, prompt problems
have been provided on paper in a ring binder, and the computer program
implementing the task has instructed students when to turn the page and read a
new problem.

The data gathered is identical to that gathered in for the TPTE task.
The PPTE task was intended to explore the relationship between problem

solving and conceptual associations. By intent, most ConMap tasks target
conceptual knowledge structure and ignore other skills and knowledge types
relevant to problem-solving; the PPTE task is an exception in that it addresses the
interface between conceptual knowledge and problem-state knowledge.
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Figure 2.3: Term entry dialog for the PPTE task.

2.1.3.4. Hand-Drawn Concept Map (HDCM)
Strictly speaking, the Hand-Drawn Concept Map (HDCM) task is not

considered to be a ConMap task, but rather a more traditional task which has
been studied elsewhere (cf. Subsection 1.2.3) and which was included in the
ConMap project for comparison purposes. Since variants of the HDCM task have
been extensively researched, it was hoped that a comparison of HDCM data with
data from other ConMap tasks for the same subjects and topic matter might aid
in the interpretation of ConMap data.

In the variant of the HDCM task implemented here, subjects are instructed to
draw by hand a concept map consisting of nodes that contain terms and links
interconnecting those nodes. A prompt term is provided as the central node,
defining the topic to be mapped, and the subject must provide and choose all
other terms. Links are not to be labeled, and the structure need not be
hierarchical. The task runs for a specified time, typically eight or ten minutes,
before terminating. The computer program presents task instructions and the
topic to be mapped (the prompt term) and counts down the allowed time with a
visible display (see Figure 2.4), but the map is drawn in pencil on 11 inch by 17
inch paper.

Figure 2.4: Prompt term and timer dialog for HDCM task.



21

2.1.3.5. Term-Prompted Statement Entry (TPSE)
For the Term-Prompted Statement Entry (TPSE) task, subjects are given a

prompt term as in the TPTE task, but instead of entering isolated terms for
responses, they are asked to enter statements — complete sentences — which
state important “things” (facts, ideas, relationships) about or involving the
prompt term. Subjects are given a specific amount of time per prompt (four
minutes in the studies conducted). This task was incorporated in only one of the
studies performed to date, with five prompt terms distributed among two
sessions. It was implemented as a paper-and-pencil task with a human
administrator keeping time, with no computer involvement whatsoever; a
computer implementation may eventually be developed, although subjects’
typing skills may then be an issue. For each prompt term, subjects were given a
sheet of paper with the prompt written at the top and nine bullets down the left
side of the page. Subjects were instructed to write one statement next to each
bullet, until nine had been written or until the session administrator terminated
the task.

The objective of this task was to provide some insight into the meanings of
the associations subjects make between terms. It was envisioned as supporting
the TPTE task by providing a more thorough understanding of some of the term
associations revealed by TPTE data and aiding in the interpretation of that data.

2.1.3.6. Term Proximity Judgment (TPJ)
An additional task which was considered but not implemented in any of the

studies to date is the Term Proximity Judgment (TPJ) task, in which subjects are
presented with every possible pairing of terms from a predefined list, one
pairing at a time. For each pairing, subjects are asked to assign a “relatedness”
rating from a numerical scale (e.g. integers from 1 to 9 inclusive). Tasks of this
type have been employed extensively in other studies of alternative assessments
(Goldsmith, Johnson et al. 1991; Gonzalvo, Cañas et al. 1994).

The TPJ task does not meet the criteria set for ConMap tasks: it requires an
extensive amount of time to administer for any reasonable number of terms, it
provides a set of externally selected terms to the subjects instead of allowing
subjects to choose their own terms, and it asks subjects to reflectively judge term
relatedness rather than eliciting spontaneous term associations. Nevertheless, it
could provide valuable data for research into cognition and the utility of
ConMap tasks; its primary virtue is its capability of providing a complete set of
connection data for all possible pairings of a term set.

This virtue imposes a significant drawback: for a set of N terms, it requires
order N2 queries of the subject to elicit complete data. If some independent basis
can be found for ruling out a large fraction of the pairings as uninteresting, the
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usefulness of the task would be greatly increased. No such basis currently exists
in the context of the ConMap studies, so the TPJ task has not included in any
studies yet conducted.

2.2. ConMap Studies
As part of the ongoing ConMap project, several studies have been

conducted, with varying population sizes, duration, task inclusion, and degree of
planning. Many of the “studies” were not intended to provide rigorous data for
full analysis, but rather to furnish preliminary data and experience as an aid to
the design of more reliable studies. Only two contained a large enough
population of subjects for serious analysis, and they provided most of the data
for Chapter 3.

The preliminary study was actually no more than a collection of test cases. It
consisted of the loose and informal presentation of various tasks, predominantly
the FTE, to various individuals of various backgrounds and levels of expertise, in
a nonsystematic way, under inconsistently-controlled conditions. The objective
was to test and debug tasks.

The Physics 119 Fall 1997 (p119f97) study drafted all 8 students from Physics
119/597T (introductory mechanics for prospective high-school physics teachers,
taught by Profs. William Gerace and Robert Dufresne). The study consisted of
one FTE task on “energy” given near the end of the course. As part of the course
itself, a HDCM task was given to students by the course instructors.

The Physics 152 Fall 1997 (p152f97) study selected 18 subjects for pay from a
pool of volunteers enrolled in Physics 152 (thermodynamics, electricity and
magnetism for engineers, taught by Prof. Jose Mestre). The study consisted of
one FTE task on the entire course domain, given at the end of the course.

The Physics 151/2 Summer 1998 (p15Xs98) study recruited five subjects for
pay from the students enrolled in the summer sessions of both Physics 151
(introductory mechanics for engineers) and Physics 152; one of the five recruits
did not complete the study. The study consisted of two sessions, each a battery of
multiple tasks. The first session was given between the end of Physics 151 and
the beginning of Physics 152, mostly on p151 material, with a “pre-test” FTE task
on p152 material. The second session was given at end of Physics 152, on p152
material. An interview with subjects was conducted and recorded after each
session.

The Physics 151 Spring 1999 (p151s99) study selected sixteen subjects for pay
from a pool of volunteers taking Physics 151 (taught by Prof. Jose Mestre). The
study consisted of ten weekly sessions during the semester, each of fifteen
minutes duration, except for the last which lasted 1.5 hours. A variety of tasks
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and prompts and topics was presented throughout, with significant repetition
designed in.

The Physics 172 Spring 1999 (p172s99) study selected five subjects for pay
from volunteers taking Physics 172 (thermodynamics, waves, fluids, and other
miscellaneous topics, taught by Prof. Ross Hicks) who had taken Physics 171
(introductory mechanics for physics majors, taught by Prof. Gerace) the previous
semester. The study consisted of two sessions. The first included various tasks
and prompts given during the first few sessions of the p151s99 study. The second
was identical to the final session of the p151s99 study, except for the inclusion of
some additional TPTE prompt terms. The intention of the study was to provide
some comparison data for the p151s99 study. Differences were expected because
of (among other factors) the fact that the Physics 171 course subjects had taken
was highly focused on conceptual structuring.

The following subsections detail the three studies from which the data
analyzed in Chapter 3 were drawn.

2.2.1. Physics 152 Fall 1997 (p152f97) Study
The purpose of this study was straightforward: to obtain FTE task data from

a relatively large sample of subjects from a typical physics course, and see what
the data might reveal.

Volunteers were sought from the body of students taking Physics 152 during
the Fall of 1997, taught by Prof. Jose Mestre. The course was aimed at
engineering and physical science majors, and covered thermodynamics for
approximately three weeks, and then spent the rest of the semester on electricity
and magnetism. Volunteers were solicited, and asked to fill out an application
form, near the end of the semester; pay was offered. Most of the subjects knew
the author as their discussion section teaching assistant for the course and had a
friendly relationship with him. Twenty of the volunteers were selected and
scheduled, based on their grades on the three course exams that had been given
and on their availability during the time slots planned. The selection was made
in an attempt to get a study population with a relatively uniform distribution of
course exam grades, from the “D” level to the “A” level. Of the twenty, eighteen
showed up for their scheduled session.

Sessions were conducted with four or five subjects simultaneously, in the
same room, each with a separate computer. All sessions occurred during the
same day, a Saturday after the end of classes and before the beginning of final
exams. The computers were arranged to prevent any subject from easily or
accidentally viewing another subject’s display. Subjects were first given a brief
written questionnaire designed to extract some basic profile information. They
were then given verbal instructions for the task and allowed to ask questions.
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After that, they were verbally given the topic area for the FTE task, and
instructed to commence. The task was halted after approximately 45 or 50
minutes, but the administrator waited until none of the present subjects had
entered a term for several seconds, so as not to interrupt any subject in the
middle of entering a cluster of terms.

2.2.2. Physics 151 Spring 1999 (p151s99) Study
The overall purpose of this study was to examine in more detail what kinds

of information the different ConMap tasks can reveal about subjects, to what
extent that information is consistent with traditional assessments and drawn
concept maps, and whether the tasks can detect the signature of evolving
knowledge as a course progresses.

After the first course exam, volunteers were solicited from the body of
students taking Physics 151 in the Spring of 1999, taught by Prof. Jose Mestre.
The course was aimed at engineering and physical science majors, and covered
introductory mechanics. Volunteers were offered financial compensation for
their participation. Subjects were chosen from the resulting pool of volunteers,
with the following objectives:

1. Have the subject population’s grades on the first course exam span the
range from slightly below course average and up, with a reasonably
uniform distribution, on the assumption that low-performing students
are less likely to take the course and the study seriously;

2. Attain as even a distribution of men and women as possible, to allow
investigation of correlations with gender;

3. Omit subjects with poor English skills (determined during telephone
contact), since most of the study tasks are verbal and require reading
and writing facility.

A total of sixteen subjects were selected and scheduled, all of whom completed
the study. One of the subjects was not given one of the tasks during the final
session, due to a logistical error.

Ten weekly sessions were held, one every class week from March first
through the end of the semester. The first nine sessions lasted approximately
fifteen minutes each, suitable for one or two tasks. The last session lasted
approximately 1.5 hours.

Session A (starting 3/02) was intended to familiarize subjects with the tasks.
The TPTE included a majority of non-physics terms. After the two tasks, subjects
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were given instructions for the HDCM task but did not actually draw a map, to
save time during the next session.

• Task 1: TPTE (food, travel, democracy, tree, acceleration, vector)

• Task 2: PPTE

Session B (starting 3/09) was intended to get some basic TPTE responses,
mostly on kinematics. A HDCM was given to serve as a basis of comparison with
an end-of-course HDCM using the same topic area, and to compare with TPTE
data.

• Task 1: TPTE (displacement, force, free-fall, energy, acceleration, graph)

• Task 2: HDCM (force)

Session C (starting 3/23) presented TPTE and PPTE tasks focused on forces
(previously covered in the course) and work and energy (being covered at that
time). One PPTE prompt problem was presented as a “problem situation”
without a question, to investigate how the presence or absence of a question
impacts subjects’ responses.

• Task 1: PPTE

• Task 2: TPTE (energy, force, inclined plane, equilibrium, reaction force,
work, normal force)

Session D (starting 3/30, the week of Exam 2) was a follow-up to Session C,
using many of the same prompts, to see how course coverage of the material and
studying for the exam impacted task results. The “problem situation” from
Session C was presented with a question, and another problem from Session C
was presented as a situation without a question.

• Task 1: PPTE

• Task 2: TPTE (conservative, inclinded plane [sic], equilibrium, reaction
force, work, spring, normal force)

Session E (starting 4/06) included as PPTE prompts two problems given on
the second course exam, to compare PPTE responses to exam performance. TPTE
problems were primarily drawn from momentum ideas, which the course was
beginning its treatment of.
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• Task 1: PPTE

• Task 2: TPTE (center of mass, power, momentum, range, collision,
potential, impulse)

Session F (starting 4/13) was intended as a first trial of the TPSE task.

• Task 1: TPSE (acceleration, force, energy)

Session G (starting 4/20) was primarily intended to present a PPTE task with
diagrams rather than with problems or problem situations.

• Task 1: PPTE

• Task 2: HDCM (energy)

Session H (starting 4/27, the week of Exam 3) revisited the momentum TPTE
prompts used in Session E, to look for evolution in responses due to course
coverage of the topic. A HDCM on “momentum” was presented to allow another
comparison of TPTE to HDCM data.

• Task 1: TPTE (center of mass, power, momentum, range, collision,
potential, impulse)

• Task 2: HDCM (momentum)

Session I (starting 5/04) presented problems from the third course exam as
PPTE prompts, to allow comparison of exam performance with PPTE data. The
TPSE task was tried again.

• Task 1: PPTE

• Task 2: TPSE (momentum, friction)

Session J (starting 5/11, the final week of classes) was a 1.5-hour session
designed to cover many tasks and extensively repeat many previously-used
prompts. The time-intensive FTE task was presented for the first and only time in
the study. Subjects were also given a group interview on their perceptions of the
tasks, and a questionnaire to elicit profile information. Because of last-minute
scheduling difficulties, only ten of the sixteen subjects were given task 5, and one
of the sixteen subjects was never given task 4.

• Task 1: FTE ("the material covered in Physics 151")
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• Interlude 1: Group Interview

• Task 2: TPTE (inclined plane, conservative, rotation, vector,
displacement, energy, force, graph, spring, free-fall, friction, velocity)

• Interlude 2: Profile Questionnaire

• Task 3: PPTE

• Task 4: HDCM (force)

• Task 5: HDCM (momentum) [only for some subjects]

Most of the student contact required by this study — contacting and
scheduling subjects and administering sessions — was done by Dan Miller,
another graduate student.

2.2.3. Physics 172 Spring 1999 (p172s99) Study
The purpose of this study was to give a subset of the tasks and prompts from

the p151s99  to subjects expected to have more highly structured knowledge, in
order to look for a signature of that structuring in the data.

Volunteers were solicited from the subset of students taking Physics 172
during Spring 1999 that had taken Physics 171 the previous semester. Physics 171
and 172 are the first two semesters of the introductory physics sequence for
physics majors; 171 covers mechanics, and 172 covers thermodynamics, waves,
fluids, and miscellaneous other topics. Physics 171 had been taught by Prof.
William Gerace, and 172 was taught by Prof. Ross Hicks. No financial
compensation was offered. Prof. Gerace chose five subjects from the pool of
volunteers, attempting to get a reasonable distribution of ability levels based on
his recollection of each student’s overall performance in 171.

This particular population of students was targeted because in the Physics
171 course, Prof. Gerace strongly and explicitly emphasized the structuring of
conceptual knowledge to students. It was hoped that this might leave an
observable signature in subjects’ ConMap task data. The study was conducted
during the middle and end of the subsequent physics course due to constraints
on the scheduling of the study, not for any specific research purpose.

Two sessions were held. The first was of about one-half hour duration,
within a week of 4/22/99. The second was held during the final week of classes
and lasted for approximately 1.5 hours.

Session A (starting 4/22) presented TPTE, PPTE, and HDCM tasks to
subjects, using a subset of the prompts given in the p151s99 study.
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• Task 1: TPTE (food, democracy, “big ideas” of mechanics, acceleration,
force, inclined plane, energy, equilibrium, graph, momentum, collision,
work, friction)

• Task 2: PPTE

• Task 3: HDCM (force)

Session B (starting 5/13) was nearly identical to Session J of the p151s99
study. Some additional TPTE terms drawn from Physics 172 course material
were added for contrast, and the HDCM prompt was changed so that the two
HDCM tasks given in the p172s99 study used different prompts.

• Task 1: FTE ("the material covered in Physics 171 last fall")

• Interlude 1: Group Interview

• Task 2: TPTE (inclined plane, conservative, rotation, vector,
displacement, energy, force, graph, spring, free-fall, friction, velocity,
wave, gravity, sound, light)

• Interlude 2: Profile Questionnaire

• Task 3: PPTE

• Task 4: HDCM (momentum)

Student contact for this study was also handled by Dan Miller.

2.3. Reflections on the Administration of Tasks
This section describes some of the difficulties encountered during

administration of the tasks. Weaknesses of the task and study designs that were
revealed during data analysis will be discussed in Chapter 3.

When administering term-entry tasks (FTE, TPTE, and PPTE), it was
occasionally necessary to remind subjects to restrict themselves to physics terms.
Subjects were sometimes inclined to include terms from chemistry, biology, or
everyday experience. A small number of non-serious “joke” terms were entered.
Some subjects included terms descriptive of the course and instructor as a whole
rather than of the subject matter, especially during FTE tasks. Clearer, more
explicit instructions with examples and counterexamples might be useful in this
regard, but a design decision was made not to provide subjects with any
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examples even vaguely related to the domain being investigated, for fear of
influencing their responses.

Despite reminders during several sessions, some subjects in the p151s99
study demonstrated a distressing tendency to include multi-term phrases and
statements in term-entry tasks. Two examples are “depends on distribution of
mass” (TPTE response to “center of mass”) and “object in motion tends to stay in
motion” (TPTE response to “momentum”). Note that for the second example,
“Newton’s first law” would communicate essentially the same meaning, but
would be accepted as a single term (representing one principle); this second
example might therefore be considered borderline legitimate. Reminding
subjects more frequently to restrict themselves to isolated terms might help curb
this tendency. It would be possible to restrict the length of response terms by
having the computer program refuse to accept more than a set number of
characters (perhaps 20), which might help to prevent the most flagrant offenses,
but this option was rejected for fear that subjects might be confused and
distracted from the task if the program did not act as they expected or caused
them to wonder whether a term they thought of would fit.

A similar but less frequent problem occurred for the TPSE task: some
subjects included occasional compound, multiple-clause, multiple-idea sentences
as a single “statement”. One example from the p151s99 study is “Friction does
work on a moving object, but points in the opposite direction of motion”; another
is “Kinetic energy is the energy of a moving object, when it is stationary, kinetic
energy is zero [sic].” Subjects seemed able to avoid this when specifically
reminded to.

A loophole was discovered in the termination scheme for TPTE and PPTE
tasks. Normally, the task terminates if the subject is idle for ten seconds and a
specified minimum number of terms (typically three) has been entered. In order
to avoid interrupting a subject during the entry of a term, the ten-second cutoff
acts only if the term entry box is empty, not if some text has been typed but not
yet entered via the return key. Some subjects apparently discovered that they
could type some text, think for any amount of time, and then delete the typed
text and enter a term without having the task terminate. There is strong evidence
that some subjects deliberately abused this loophole. Subject p151s99-14 had six
thinking times greater than the ten-second cutoff in each of three different tasks.
Several other subjects had as many as five, six or seven such illegal times for
some tasks. Thinking times of 79.98 seconds and 155.54 seconds were seen.
Fortunately, subjects seemed cooperative when they were informed of the
loophole and asked to avoid exploiting it; deliberate abuse appeared to cease,
and only a few instances, probably accidental, occurred thereafter.
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When subjects are given a PPTE task, it is difficult to control how long they
spend considering the problem before beginning to enter response terms. Since
subjects’ reading speeds and the complexity of the prompt problems varied
significantly, it was difficult for an observer to estimate how contemplative
subjects might be during the reading phase. It was not intended that subjects pre-
think their responses at all, but some time was clearly necessary to “digest” the
problem. This difficulty may be unavoidable when using complex prompts for
spontaneous association tasks.

A related PPTE task complication arises when subjects wish to pause in their
entry of response terms and remind themselves of some aspect of the prompt
problem by looking back at it. Such a desire seems reasonable, given that subjects
have been instructed to keep their responses relevant to the prompt problem and
that they are unlikely to keep every detail of the problem in mind after one
reading. For the TPTE task, the prompting term is kept visible and prominent
directly above the term-entry box, and subjects are expected to glance at it
frequently to re-focus themselves. For the PPTE task, however, a subject’s re-
reading of the problem can introduce a significant and difficult-to interpret
thinking time into the data, or even cause the task to terminate. This problem
might also be unavoidable when using a complex prompt for a spontaneous but
constrained association task.

When carrying out the HDCM task, some subjects demonstrated a
misunderstanding about how maps were supposed to be drawn. Some of the
maps drawn had more than one node containing the same term, presumably
either through forgetfulness or as a convenience for the mapmaker. Some maps
had branching links which connected more than two nodes together. Subjects
had read brief written instructions on how to draw a proper map, and had been
shown an example map for a non-physics topic. More explicit instructions and
training are apparently necessary.

Another difficulty which occurred with the HDCM task, and to a lesser
extent with term entry tasks, was that subjects sometimes entered incomplete
terms whose meaning was only clear from the context in which the fragment
appeared. For example, a concept map might have “kinetic” and “static” as
nodes connected to a node for “friction”, and might have other nodes for
“kinetic” and “potential”, connected to “energy”. Technically, this is a case of
duplicate nodes, since two nodes both contain the term “kinetic”. However, from
their context, the two nodes clearly refer to different concepts: “kinetic friction”
and “kinetic energy”. Most such term fragments could be completed with ease
by a domain expert during data analysis, but would pose a significant problem
for computerized analysis procedures and for integrated ConMap systems which
might, for example, use terms harvested from one task as prompts in another.
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Better instruction and training of subjects might reduce the incidence of the
problem, but would probably not eliminate it entirely, since subjects may not
realize their term fragments are ambiguous.

For the long-duration FTE and HDCM tasks, subjects were intended to
concentrate on the task until time expired, even if that required them to search
their minds for minutes at a time to think of additional terms or map
elaborations. Sometimes, however, subjects appeared to relax and cease working
on such a task before time had run out, as if they had decided they had nothing
more to add. This is perhaps not a very serious problem, since a subject inclined
to make that decision might not have entered much more had they remained on
task. The more general issue of subject attention and distraction plagues all
studies in which subjects are required to concentrate for extended periods of
time, and may be unavoidable.

For the most part, the problems noted during administration of the tasks
were not major and did not appear to impact the data seriously enough to
prevent the preliminary analysis intended. The one exception is subjects’
exploitation of the TPTE/PPTE task termination loophole, which introduced a
nontrivial number of spurious data points into the timing data. Most of the
problems should be addressable through improved instruction and training
procedures in future studies, and the remainder are probably unavoidable
consequences of the natures of the tasks themselves.
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3. ConMap Analysis
Data gathered during the ConMap studies has been subject to three different

kinds of “analysis”: phenomenological description, hypothesis testing, and
modeling.

A phenomenological description of the data is useful as a starting point for
further analysis and for evaluation and modification of the tasks, and for the
design of future studies. A major analytical goal within the ConMap project was
to characterize the data returned by the various tasks, and to draw attention to
features of the data which may be of significance and which may lend
themselves to a model-based interpretation. The phenomenological analysis
conducted focuses primarily on the patterns across subjects and sessions with the
study populations, rather than differences between them, since the samples are
small enough and the data noisy enough to prevent reliable identification of
significant discrepancies between individuals. Some attempts were made,
however, to find aspects of the data which distinguish subjects from each other
and which might reveal natural variables for describing or categorizing subjects.

With data from some of the tasks, several hypotheses were investigated
statistically. These hypotheses typically predicted a correlation between different
aspects of the ConMap data, or between some aspect of the ConMap data and an
external measure like course exam performance. The general purpose of such
hypothesis testing is validation of the ConMap tasks as subject probes:
demonstrating that patterns in the data captured by ConMap tasks are not mere
statistical curiosities, but do in fact reveal something meaningful about subjects
with some degree of reliability.

Evidence for validation can take two forms: external and internal. External
validation uses an established measure like performance on an already-validated
assessment as a standard of comparison. Validation of concept map and
Pathfinder-based assessment methodologies, for example, generally compare
measures of domain mastery extracted from the methodology with traditional
exam scores. Internal validation uses the internal consistency of a set of data as
evidence for its objective validity by demonstrating that relevant patterns are
reliably robust and reproducible.

External validation is the stronger form. Unfortunately, it was not of much
use with ConMap. The only available data from the ConMap studies that could
be considered “external” to the ConMap tasks was subjects’ course grades. Of
these, homework grades reflect effort more than knowledge state, and in-class
quiz grades were collaborative and therefore corrupt as measures of individual
knowledge, leaving only exam grades for comparison. But the original
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motivation of the ConMap product was the belief that traditional, problem-based
exams serve as poor indicators of knowledge structure; exam grades are
therefore not expected to correlate more than weakly with interesting measures
from the ConMap data. While some attempts were made to compare ConMap
measures against course exam performance, strong and compelling results were
not expected.

It should be possible to construct exams or other instruments to probe
knowledge content and structure more effectively than traditional exams; for
research purposes, these instruments would not need to be constrained by
standard course requirements for practicality (amount of student or evaluator
time required, for example). Such instruments could in principle be used to
validate ConMap-based assessments, although none were designed into the
ConMap studies. Future studies should rectify this shortcoming.

The remainder of this chapter presents analysis of data from the ConMap
studies. Each of the chapter’s sections addresses one type of ConMap task. Data
from the task are described and summarized, and phenomenological analysis of
the data is presented. With data from the FTE, TPTE, and PPTE tasks, the in-
depth investigation of some specific hypotheses is discussed. For all tasks,
suggestions for follow-up studies are made, including recommendations for
design changes to rectify inadequacies discovered in the present study’s design.

3.1. Free Term Entry (FTE) Data Analysis
As described in Subsubsection 2.1.3.1, for a Free Term Entry (FTE) task,

subjects are given a target domain like “introductory mechanics” or “the material
covered in Physics 152”, and asked to type into a dialog box terms that they
associate with the domain, one term at a time, pressing the return key after each
term. Each term disappears when they press the return key. Subjects are asked to
enter the terms in the order they think of them, as close as possible to the time
they think of them, with minimal disruption of their train of thought.

Section 3.1 analyzes the data from the FTE component of the p151s99,
p152f97, and p172s99 studies. Subsection 3.1.1 takes a phenomenological
approach, describing observable statistical features of the data. Subsection 3.1.1
addresses the specific question of whether the amount of time subjects spend
thinking before entering a term is correlated with how related that term is to
immediately previous terms. Subsection 3.1.3 investigates whether a correlation
exists between subjects’ in-course exam scores and the frequency with which
their FTE response terms are apparently unrelated to immediately previous
terms. Subsection 3.1.4 summarizes the findings.
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3.1.1. Phenomenological Description of Data

3.1.1.1. Raw Data
The raw data captured for each subject on each FTE task is a list of the terms

entered, in the order entered. Along with each term, the time at which the first
letter of the term was typed (start time), and the time at which the return key was
pressed to complete the term (enter time), are recorded. Times are determined by
the system clock of the computer presenting the task, and recorded to one
sixtieth of a second. For later analysis, the start time of the first entered term was
subtracted from these times, defining the “t = 0” point.

As an immediate data processing step, a typing time and thinking time are
calculated for each term. The typing time is the difference between the term’s
enter and start times, indicating how long the subject spent typing the term. The
thinking time is the difference between the term’s start time and the previous
term’s enter time, indicating how much time passed between the two terms
while the subject was not typing. The thinking time for the first entered term was
defined to be zero.

Such data was collected and analyzed for each of three studies: p151s99 (16
subjects), p172s99 (5 subjects), and p152f97 (18 subjects). Data from one of the
p152f97 subjects was discarded because the subject clearly misunderstood the
task instructions and carried out the task in a way which made the data
meaningless.

3.1.1.2. Times as Random Variables
Consider a timeline to be a series of start times {t1, t2, …, tN} for the N term entries.
Define the series of time differences {∆t1, ∆t2, …, ∆tN} by ∆tn = tn – tn–1 and t0 = 0, so
that the time difference for a term is equal to the term’s thinking time summed
with the previous term’s typing time. Define a term’s index to be 1 if it was the
first term entered in a subject’s FTE response set, 2 if it was the second entered,
etc. Figure 3.1, Figure 3.2, and Figure 3.3 show start time difference vs. term
index, thinking time vs. term index, and typing time vs. term index respectively
for the data set of an example subject (p151s99 study, subject 01 on task J1_FTE).

The start time differences and thinking times appear randomly distributed
inside an envelope that increases with term index. The typing times do not tend
to increase significantly with term index. For all three plots, short times appear
more common than longer ones.

Disregarding for now the systematic trend of increasing times with term
index, the sets of start time differences, thinking times, and typing times can each
be analyzed as a set of uncorrelated values drawn from a random distribution,
and the nature of those distributions can be explored. For the same example data
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Figure 3.1: Start time differences vs. term index for study p151s99, subject 01 on
task J1_FTE.
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Figure 3.2: Thinking time vs. term index for study p151s99, subject 01 on task
J1_FTE.

set as above, Figure 3.4, Figure 3.5, and Figure 3.6 show histograms of the natural
logarithms of the start time differences, thinking times, and typing times. The
natural logarithm of the times has been used rather than the times themselves
because short times are far more common than long times, and a linear scale that
included the longest times would lose detail for the short times. Although the set
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Figure 3.3: Typing time vs. term index for study p151s99, subject 01 on task
J1_FTE.
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Figure 3.4: Histogram of the natural logarithms of the start time differences for
study p151s99, subject 01 on task J1_FTE.

of typing times does not include as wide a range of times as does the set of
thinking times, the same logarithmic scale was used for consistency and ease of
comparison.
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Figure 3.5: Histogram of the natural logarithms of the thinking times for study
p151s99, subject 01 on task J1_FTE.
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Figure 3.6: Histogram of the natural logarithms of the typing times for study
p151s99, subject 01 on task J1_FTE.

The distributions of the logarithms of start time differences and thinking
times look generally normal, with a noticeable skew to the right. The thinking
time histogram has a pronounced spike to the left of its peak. The logarithmic
typing time distribution, on the other hand, has a slight tail to the left. The fact
that all three histograms are at least crudely normal indicates that the
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distributions are approximately log-normal, and justifies the decision to look at
the distributions of the logarithms rather than of the times themselves. (A
random variable obeys a log-normal distribution if its logarithm obeys a normal,
i.e. Gaussian, distribution.)

Because we expect thinking times and typing times to be the fundamental,
approximately independent quantities indicative of subjects’ mental
machinations during a FTE task, and because start time differences are
dependent quantities calculable from thinking and start times, the following
analysis will focus on thinking and typing times and not on start time
differences.

3.1.1.3. Thinking Time Distribution
Thinking time are interesting because they might plausibly provide

information about the cognitive process underlying a subject’s responses to the
FTE task. At the very least, a long thinking time probably indicates significant
cognitive processing of some kind. Characterization of thinking time statistics is
therefore of interest for characterizing individual subjects and for guiding
theoretical modeling efforts of cognitive structure and processing.

To the extent that the thinking and typing times in a subject’s FTE response
set are approximated by a log-normal distribution, the response set can be
characterized by the parameters necessary to fit such a distribution to the time
sets. These parameters might serve as useful overall measures of a subject’s
performance on the task. Residual differences between the actual subject
distributions and the best-fit curves might be illuminating, if divergences
between individual subjects’ patterns and the log-normal model can be given a
cognitive interpretation.

Fitting a normal distribution to the logarithms of a set of times produces the
same best-fit parameters as fitting a log-normal distribution to the times
themselves, and is computationally and conceptually easier. Also, rather than fit
a distribution’s probability density function (PDF) to a histogram of data, it is
advantageous to fit the distribution’s cumulative distribution function (CDF) to a
quantile plot of the data, so as to avoid the arbitrariness introduced by choosing
histogram bins. A quantile plot for a set of times is constructed by sorting the set
into increasing order and assigning to each time an ordinate equal to the fraction
of times in the set less than or equal to that time. A time whose quantile value is
0.5 is therefore the median of the set. If a random distribution’s PDF (properly
normalized for total number of points and bin width) should fit a measurement
set’s histogram, then its CDF should fit the corresponding quantile plot. For the
histogram of thinking times shown above in Figure 3.5, the corresponding
quantile plot is presented in Figure 3.7.
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Figure 3.8: Histogram of logarithms of thinking times for subject p151s99-01 on
the J1-FTE task, with best-fit curve for normal (Gaussian) probability density
function, normalized for total number of counts.
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The dashed line represents the best-fit curve for the normal distribution’s
cumulative distribution function
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(Eq. 3.1),

where µ and σ are fit parameters. The best-fit parameter values can be used to
generate a PDF for comparison with the data histogram, as shown in Figure 3.8.

p151s99 µ   σ   χ∗χ  p152f97 µ   σ   χ∗χ  
-01 0.68 1.50 0.078 -01 2.10 2.23 0.132
-02 1.21 1.82 0.100 -02 2.34 1.66 0.140
-03 1.63 2.12 0.043 -03 1.64 3.05 0.130
-04 1.62 1.85 0.050 -04 2.48 1.53 0.127
-05 1.83 1.95 0.055 -11 2.03 1.81 0.028
-06 0.90 1.61 0.033 -12 2.03 2.40 0.120
-07 1.42 1.65 0.088 -13 2.52 1.40 0.016
-08 1.50 1.97 0.061 -14 1.30 1.78 0.238
-09 1.67 1.77 0.082 -15 1.84 1.78 0.184
-10 0.85 1.38 0.160 -21 2.06 2.12 0.097
-11 1.38 2.11 0.096 -22 2.21 1.95 0.116
-12 1.21 1.51 0.100 -24 1.64 2.22 0.185
-13 0.98 2.15 0.067 -25 2.14 2.07 0.121
-14 1.39 1.20 0.038 -31 2.76 2.09 0.099
-15 1.12 1.60 0.040 -32 * * *
-16 1.21 1.73 0.113 -33 1.74 1.94 0.056

mean 1.29 1.75 0.075 -34 1.07 1.57 0.242
std. dev. 0.33 0.28 0.034 -35 0.23 1.60 0.024

mean 1.89 1.95 0.121
p172s99 µ   σ   χ∗χ  std. dev. 0.61 0.40 0.067

-01 1.71 1.74 0.053
-02 1.06 2.03 0.234
-03 1.90 1.96 0.038
-04 2.18 2.26 0.045
-05 1.50 2.13 0.062

mean 1.67 2.02 0.087
std. dev. 0.42 0.19 0.083

Table 3.1: Best-fit parameters when a normal distribution is fit to the set of
logarithms of thinking times, for the FTE task, of subjects in the p151s99, p152f97,
and p172s99 studies. (Subject p152f97-32 misinterpreted the task instructions in a
way that made that his/her data worthless.)

For each FTE task in each study, this two-parameter fit was performed on
each subject’s set of thinking time logarithms using a chi-squared algorithm.
Table 3.1 shows the resulting fit parameters for the three studies. χ2 values for the
fits are indicated to provide a relative sense of fit quality.
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Of all 38 analyzed subjects in the three studies, the subject with the largest χ2

value for the thinking time fit is p152f97-34, with a χ2 value of 0.242. According to
the χ2 measure, this is the thinking time data set for which the log-normal fit is
the poorest. The quantile plot with CDF fit is shown in Figure 3.9, while
Figure 3.10 displays the corresponding histogram of thinking time logarithms
and PDF curve for the fit parameters generated by the CDF fit.

Both Figure 3.8 and Figure 3.10 show a marked spike on the left side of the
distribution. Examination of the corresponding histograms for all 38 subjects in
the three studies shows that most of the histograms display a pronounced spike
on the left edge of a broad peak, and very few of the histograms do not have at
least a rudimentary bump there. Given the low number of counts in many data
sets and the general noise level of the data, all the data sets might plausibly obey
a distribution with a strong spike superimposed on a broader peak.

To further investigate the random variable distribution which might model
thinking time measurements, the data from the 38 subjects was aggregated into
one large set. Such aggregation loses subject-specific details of the individual
data sets, but might help reveal more general patterns common to the sets but
obscured by statistical noise.
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Figure 3.9: Quantile plot of logarithms of thinking times for subject p152f97-14
on FTE task, with best-fit curve for normal (Gaussian) cumulative distribution
function.
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Figure 3.10: Histogram of logarithms of thinking times for subject p152f97-14 on
FTE task, with best-fit curve for normal (Gaussian) probability density function,
normalized for total number of counts.

To aggregate  the data, it was necessary to assume that all the data sets are
roughly described by a normal distribution of thinking time logarithms. The
thinking time logarithms from each set could then be “standardized”, i.e. scaled
so that the best-fit normal distribution to the set is the “standard” normal
distribution with a mean of zero and a standard deviation of unity. If the best-fit
parameters of a normal distribution to a subject’s data set are µ and σ, and τi is
the logarithm of the ith thinking time, then the variable transformation which
standardizes that subject’s thinking time logarithms {τi} is xi i≡ −( )τ µ σ . Once
each subject’s data was standardized, all 38 sets studies were aggregated into a
larger data set.

Figure 3.11 shows a quantile plot for the resulting aggregate data. Two fits to
the data are included: a CDF fit for a normal distribution, and a CDF fit for a sum
of two normal distributions (“double normal” distribution), which will be
discussed below. The best-fit values for the normal distribution are close to µ = 0
and σ = 1; this is expected because all individual subject data sets were
standardized to those values before aggregating.

Figure 3.12 displays a histogram of the aggregated values, with PDF curves
shown for the two fits obtained from the quantile plot. Here the data is clearly
seen to two separate peaks. This is not surprising given the spike-plus-peak
shape seen in the individual data sets. The broad main peak of the various sets
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aggregate to a well-defined peak, with statistical noise smoothed out; the leading
spikes from the various sets do not all occur at the same time value, even when
standardized, so they aggregate to a second peak of similar size and smaller
width rather than to a narrow, tall spike.
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Figure 3.11: Quantile plot for logarithms of thinking times, standardized by
subject to a normal distribution, aggregated across all subjects in the p151s99,
p172s99, and p151f97 studies. CDF curves for the best-fit normal (dot-dashed
line) and double-normal (dashed line) distributions are indicated. The double-
normal fit lies close enough to the data that it is difficult to distinguish.

Since the histogram displays two peaks, a normal distribution is clearly only
a very approximate description of the data. A two-peaked distribution would be
more appropriate, motivating the application of a “double-normal” distribution,
defined to be the normalized sum of two normal distributions. The PDF is
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The double-normal CDF was fit to the aggregate  quantile plot with an
iterative χ2 procedure; the resulting best-fit parameters are indicated in
Figure 3.11, and the corresponding CDF and PDF curves are shown on the
quantile plot and histogram, respectively.

250

200

150

100

50

0

co
un

t

43210-1-2-3
standardized ln(tThink / 1 sec)

all 3 studies, FTE
aggregated standardized

thinkT histogram
(38 subjects, 2849 counts)

 data
 normal fit
 doubleNormal fit

Figure 3.12: Histogram for logarithms of thinking times, standardized by subject
to a normal distribution, aggregated across all subjects in the p151s99, p172s99,
and p151f97 studies. PDF curves  for the normal and double-normal distributions
fit to the previous quantile plot are indicated.

On both the quantile plot and histogram, the double-normal distribution can
be seen to fit significantly better than the normal distribution, especially along
the leading edge of the data. A comparison of the χ2 values for the two fits,
indicated on the quantile plot, supports this observation.

For a comparison between study populations, subject data sets within each
of the studies can be aggregated and fit via the same procedure as used above.
Figure 3.13 and Figure 3.14 show a quantile plot and histogram for aggregated
p151s99 data, with fits; Figure 3.15 and Figure 3.16 show the same for p152f97
data; and Figure 3.17 and Figure 3.18 show the same for p172s99 data.
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Figure 3.13: Quantile plot with best-fit double-normal CDF for aggregated
p151s99 data.
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Figure 3.14: Histogram with best-fit double-normal PDF for aggregated p151s99
data.
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Figure 3.15: Quantile plot with best-fit double-normal CDF for aggregated
p152f97 data.
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Figure 3.16: Histogram with best-fit double-normal PDF for aggregated p152f97
data.
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Figure 3.17: Quantile plot with best-fit double-normal CDF for aggregated 172s99
data.
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data.
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Both the p151s99 and p152s97 aggregated sets are well fit by the double-
normal distribution, although for somewhat different best-fit parameter values.
The fit to the p172s99 data is less satisfactory. This could be attributable to poorer
statistics because of the significantly smaller sample size (5 subjects for 295
counts, vs. 16 subjects for 1286 counts in the p151s99 study and 17 subjects for
1268 counts in the p152f97 study). It could also be a consequence of the fact that
the p172s99 FTE task was administered at the end of the semester subsequent to
the course whose domain was the topic of the FTE, whereas the p151s99 and
p152f97 FTE tasks were administered directly at the end of the relevant course.
Histograms for individual subjects in the p172s99 study (not shown here) are
quite noisy but display some tendency towards a leading spike, suggesting that
the underlying distribution is similar to that of the other studies, but obscured by
noise.

It would be desirable to return to the subject-specific, non-standardized data
sets and fit them with the double-normal distribution, obtaining best-fit
parameters which might prove more useful and revealing as subject
characterizers than the parameters for the normal fit listed in Table 3.1.
Unfortunately, the five-parameter double-normal fit is quite sensitive to noise in
smaller data sets, and frequently produces a fit different from what the human
eye would consider most appropriate. Figure 3.19 shows eight arbitrarily-chosen
sample cases from the p151s99 study to demonstrate the range of fits which can
result.

For subject 01 and especially for subject 06, the spike and main peak are not
distinct enough, and the two peaks of the double-normal distribution merge
together into a single peak. For subjects 02, 04, and 05, the fit captures two
similar, roughly equal peaks. For subjects 03 and 07, the fit captures and perhaps
exaggerates the leading spike and the broad main peak. For subject 08, the
histogram has two narrow spikes and a broad central plateau, and the fit
included the plateau with the first peak rather than the second, producing a
trailing rather than a leading spike.

Overall, the double-normal distribution seems to do an adequate job of
fitting the data, but the noise level is sufficiently high so that the fit often fails to
display the spike-plus-broader-peak distribution that seems suggested by
the overall pattern of the data. Therefore, fitting individual subject data with a
double-normal distribution is not fruitful for extracting fit parameters to use as
subject-specific characterization measures. The fact that a double-normal
distribution does seem to describe the overall pattern of the data, however, may
be useful in guiding the construction of theoretical models of underlying
cognitive processes.
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As an alternative, single-subject data sets which show an identifiable spike
and peak could be crudely characterized by the locations (thinking-time values)
of the spike and peak, and perhaps the fraction of events ascribable to the spike.
The thinking times describing the spike and peak locations might be
interpretable as characteristic cognitive times of the subject. Further analysis in
this direction is warranted.

3.1.1.4. Typing Times
Although typing times might shed light on how the mechanism of the FTE

task impacts the interpretation of thinking times and other data, we do not
expect them to be particularly revealing of subjects’ domain knowledge and
cognitive processes, so they have not been analyzed as thoroughly as have
thinking times.

Because histograms of the logarithms of each subjects’ typing times, like
thinking times, look approximately normally distributed, a quantile plot of
typing time logarithms was constructed for each subject, and fit with a normal
distribution CDF. The resulting best-fit parameters are listed in Table 3.2.

These parameters might be useful in describing subjects’ typing facility,
which could have relevance to the cognitive interpretation of FTE task results.
For example, some subjects (notably skilled typists) might be able to “parallel
process” and think about the next term to enter while typing a response term.
Some of the expert subjects who tried the FTE task in preliminary studies
observed that by the time they had finished typing a term, they had frequently
already though of the next term to enter. In such situations the “thinking time”
does not accurately describe the time required to think of the next term, but
rather the physical time required to type the first letter of the term after pressing
the enter key.

If a subject accomplishes a significant amount of thinking while typing, one
might expect to see a tendency for shorter thinking times to follow longer typing
times. To look for such a tendency, a scatterplot was constructed for each
subject’s FTE data, in which each thinking time was plotted against the previous
term’s typing time. Figure 3.20 shows an example of such a plot.

If thinking while typing caused thinking times to be slightly shorter when
following long typing times, then such a scatterplot should reveal the correlation
as an excess of points in the top-left and bottom-right quadrants of the plot, and a
scarcity in the bottom-left and top-right. Plots equivalent to that of Figure 3.20
were constructed and examined for each of the subjects in the p151s99, p172s99,
and p152f97 studies, and none displayed such a correlation. In fact, a few of the
scatterplots showed a very slight tendency towards a positive correlation, with a
deficit of points in the top left and bottom right corners, although the trend was
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weak enough to be of questionable significance. Such a positive correlation might
result if longer typing times correlate with terms that are more difficult to type
(perhaps due to unfamiliar spelling or approximate mathematical notation), with
a corresponding cognitive load that prevents thinking of the subsequent term. It
might also indicate general fatigue, so that slower typing accompanies the longer
pauses which occur late in the task. Another possibility is that subjects tend to
enter longer terms later in the task as, having exhausted their vocabulary of
shorter, simpler terms, they enter longer and more esoteric (perhaps compound)
terms.

p151s99 µ   σ   χ∗χ  p152f97 µ   σ   χ∗χ  
-01 1.07 0.59 0.328 -01 0.95 0.67 0.029
-02 1.23 0.62 0.071 -02 1.58 0.59 0.041
-03 1.20 0.53 0.015 -03 1.49 0.79 0.026
-04 1.23 0.65 0.078 -04 1.99 0.52 0.021
-05 1.42 0.61 0.041 -11 2.54 1.09 0.166
-06 1.85 0.54 0.110 -12 1.58 0.50 0.049
-07 1.19 0.54 0.114 -13 2.29 0.99 0.102
-08 1.33 0.64 0.047 -14 1.25 0.63 0.038
-09 1.05 0.63 0.035 -15 1.45 0.72 0.028
-10 1.86 0.77 0.034 -21 1.20 0.85 0.030
-11 1.48 0.51 0.031 -22 1.46 0.74 0.040
-12 1.43 0.66 0.020 -24 1.24 0.60 0.061
-13 0.98 0.62 0.012 -25 1.77 0.45 0.053
-14 1.28 0.64 0.052 -31 1.56 0.80 0.050
-15 1.41 0.75 0.044 -32 * * *
-16 1.56 0.57 0.477 -33 1.57 0.66 0.050

mean 1.35 0.62 0.094 -34 2.22 0.77 0.035
std. dev. 0.25 0.07 0.127 -35 1.44 0.53 0.023

mean 1.62 0.70 0.050
p172s99 µ   σ   χ∗χ  std. dev. 0.42 0.17 0.036

-01 1.05 0.63 0.044
-02 1.68 0.57 0.052
-03 1.55 0.60 0.059
-04 1.35 0.74 0.069
-05 1.55 0.56 0.053

mean 1.43 0.62 0.056
std. dev. 0.24 0.07 0.009

Table 3.2: Best-fit parameters when a normal distribution is fit to the set of
logarithms of thinking times, for the FTE task, of subjects in the p151s99, p152f97,
and p172s99 studies. (Subject p152f97-32 misinterpreted the task instructions in a
way that made that his/her data worthless.)

Further analysis of the existing data might suggest one or another of these
possibilities, but the issue of how the mechanical aspects of term entry interact
with the cognitive aspects is general and important enough to warrant a carefully
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designed study of its own. Such a study might have subjects perform an FTE
verbally, with timing data extracted after the fact from an audio recording, or in
writing, with timing data extracted from a videotape. Comparisons with a typed,
computer-mediated FTE as used in this study might clarify the impact of typing
on task performance. Independent measures of subjects’ facility at typing would
be another useful data source.
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Figure 3.20: Successor scatterplot for thinking time against previous typing time,
for subject p151s99-01 on task J1_FTE.

3.1.1.5. Temporal Correlations
The previous sections have examined FTE start time differences, thinking

times, and typing times as if they were uncorrelated numbers drawn from a
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random distribution. Such a description is incomplete: the times form a well-
ordered sequence from the beginning to the end of the task, and both overall
trends and correlations between neighboring values are possible.

A timeline displays a FTE response set’s start times along a one-dimensional
timeline. The timeline for subject 01 of the p151s99 study, task J1_FTE, is
displayed in Figure 3.21. Two global patterns appear:

1800170016001500140013001200
starting time [sec]

120011001000900800700600

6005004003002001000

Figure 3.21: Timeline of FTE entries for study p151s99, subject 01 on task J1_FTE.

1. As the task progresses, term entries become increasingly sparse;

2. Term entries appear to occur in clusters, especially later in the task.

The same general patterns are observable in timelines for the other subjects.
Both patterns make intuitive sense: term entries become increasingly sparse

later in the task because subjects have already entered most of their readily
accessible terms, and have to think hard to recall additional terms; and term
entries tend to occur in clusters because when a subject thinks of a term, it often
suggests other connected terms. Both apparent patterns will be investigated
below.

Decreasing Term Entry Rate
To make more rigorous the qualitative observation that term entries in the

timeline become sparser as the task progresses, rate of term entry can be plotted
vs. elapsed time for each subject’s data set. A “moving window” technique is
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used to calculate the locally-averaged rate of term entry at any given time during
the task: for a time of t and a window of width w, the average term entry rate is
defined to be the number of start times in the interval (t – w/2, t + w/2) divided
by w. The larger the window, the smoother the resulting function for term entry
rate; the smaller the window, the more sensitive the function is to local variations
in term entry rate.

For subject p151s99-01, Figure 3.22 shows a plot of average term entry rate
vs. elapsed task time for a window of width w = 100 seconds; Figure 3.23 shows
the same for a window of width w = 500 seconds. To avoid edge effects, the term
entry rate has not been calculated closer than w/2 to the beginning or end of the
task.

Both plots show clearly that the average rate of term entry decreases as the
task progresses. Both also show that the average rate fluctuates significantly
throughout the task. Note that the larger window width is greater than 1/4 of the
entire task duration, so very significant averaging occurs, and yet fluctuations
are still quite evident. This is caused by the local density fluctuations — the
“clustering” — seen in the data.

Not all subject data sets show such a clear overall decrease in term entry rate.
Figure 3.24 displays the same plot as Figure 3.23, but for subject p152f97-02. The
overall trend is not so simple.
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Figure 3.22: Term entry rate vs. elapsed task time for subject p151s99-01 on task
J1_FTE, with window width 100 sec.

Another representation of term entry rate vs. elapsed task time, which has
the advantage of not requiring an arbitrary window width choice, is cumulative
number of terms entered (as a fraction of the total number of terms for the task)
vs. elapsed task time. This is analogous to examining a distribution’s CDF rather
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than a histogram corresponding to its PDF. In this representation a constant rate
of term entry from task beginning to end would result in a straight line of
positive slope, and a term entry rate that decreases with time would result in a
curve that begins from the origin with large slope and then approaches a
horizontal line as the elapsed time increases (like the classic “charging capacitor”
curve). Figure 3.25 shows such a plot for the data set represented in Figure 3.22
and Figure 3.23, and Figure 3.26 shows one for the data set in Figure 3.24.
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Figure 3.23: Term entry rate vs. elapsed task time for subject p151s99-01 on task
J1_FTE, with window width 500 sec.
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Figure 3.24: Term entry rate vs. elapsed task time for subject p152f97-02 on FTE
task, with window width of 500 sec.
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Figure 3.25: Cumulative number of terms entered vs. elapsed task time for
subject p151s99-01 on task J1_FTE.
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Figure 3.26: Cumulative number of terms entered vs. elapsed task time for
subject p152f97-02 on FTE task.

These representations of the data clarify the subjective impression of
increasing term sparseness conveyed by the timelines, and could be used to
quantify the trend. For example, one could fit a simple function like a second-
degree polynomial or 

    
1 −( )−e tα  saturation curve to the cumulative term count vs.

elapsed time plots, and use the fit parameters to characterize the changing
density. This might be useful to constrain and test theoretical models of the task
dynamics. In the absence of a model, however, there seems to be little reason to
pursue the issue.
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Clustering
Although the timelines appear to show clustering, it is not obvious that this

clustering isn't an illusion of statistical fluctuations. Here, we use the term
clustering to mean a tendency for terms to come in runs separated by short times
that differs statistically from what would be expected for uncorrelated random
variables. Any series of numbers drawn from a random distribution weighted
towards small values (like a log-normal distribution) will be punctuated by
occasional large values, which, when interpreted as gap lengths in a timeline,
would give the appearance of “clustering” of the intervening shorter values.
Such clustering is no more meaningful than the various runs of consecutive
“heads” that occur during repeated tosses of a biased coin. Clustering of term
entries in a timeline, if statistically significant, indicates that the time differences
in the series are not uncorrelated, but that short time differences tend to come
close together. In other words, the data displays statistical behavior not
modelable by a sequence of uncorrelated values drawn from a random
distribution.

To determine whether the apparent clustering does in fact describe a
significant feature of the data, the series of time differences must be checked for
correlations. A simple way to do this is to construct a successor correlation plot, a
scatterplot of ∆tn vs. ∆tn–1 for all terms in a FTE response set. If time differences
are in fact uncorrelated, the points on the plot should show no correlation. If, on
the other hand, short time differences tend to come in clusters, the data points
should fall along a diagonal line with positive slope. Figure 3.27 displays
successor correlation plots for subjects in the p152f97 study.

Figure 3.27 and similar plots for all other subjects in the p151s99, p172-s99,
and p152-f97 studies show no obvious correlation, which suggests that the
apparent clustering visible in the timelines can be described as statistical
fluctuations in an uncorrelated random variable. Note that this does not imply
that the thinking times in a FTE data set are truly random in origin, or that
response terms are in fact unrelated to each other, or that the apparent clusters
are without meaning; it merely means that the set of thinking times has the
statistical properties of a sequence of uncorrelated random variables. It remains
quite possible that a detailed cognitive model of the processes elicited by the task
could explain the observed data without invoking random distributions.

This “no correlation” result does not even imply that there is no statistical
difference between the observed data and the pattern expected for an
uncorrelated random variable, merely that this test is not sensitive to any
difference that might exist. Other tests might be worth investigating.

Perhaps the most significant conclusion to be drawn from this result is that it
appears unrealistic to seek a purely statistical criterion by which to identify



59

“clusters” in the response list for use in further analysis. If we wish to define
clusters, for example to test the hypothesis that clusters contain sequences of
terms which are related in the topic domain, an external rule must be imposed.
An example of such a rule might be “a cluster is defined as a sequence of terms
separated by thinking times of less than   τ c , preceded and followed by thinking
times greater than   τ c ,”, which depends on a choice of   τ c .
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Figure 3.27: Successor correlation plot for thinking times, for subject p151s99-01
on task J1_FTE.

3.1.2. FTE Thinking Times vs. Term Relatedness
In Subsection 3.1.1, analysis of FTE data focused on timing information and

ignored the meanings of the terms entered by subjects. This section will attempt
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to relate thinking times to one aspect of term meanings, the degree to which
adjacent terms in the FTE response list are related or unrelated to each other.

3.1.2.1. Introduction
According to the introspective testimony of experts who served as FTE

subjects in preliminary studies, term entry events can be crudely classified into
two types: those for which the term to be entered was immediately suggested by
terms immediately preceding it, and those for which the subject had to search
his/her memory for some period of time to think of the term. According to these
expert subjects, the immediately-suggested terms were generally closely related
in meaning to one of the prior few terms, while the terms thought of after a
period of mental searching were usually related only distantly to prior terms.
This suggests the following hypothesis: let the term jump refer to a term which is
“relatively unrelated” to any one of the previous n terms in a FTE response list;
then, in FTE response data, longer thinking times should be statistically more
likely to occur for jumps, while short thinking times should be more likely to
occur for non-jumps.

To make this hypothesis testable, “relatively unrelated” must be defined, and
a value for n must be chosen. For this initial investigation, n was arbitrarily set at
three, which seemed reasonable based on perusal of the response lists and
interviews with expert subjects. Each term in each response list analyzed was
compared to the three previous responses in the list by one domain expert (the
author), and subjectively declared to be relatively related to one of the three
(non-jump) or relatively unrelated to all three (jump).

A neighborhood of multiple preceding terms was used, rather than the one
immediately preceding term, because interviews and perusal of term lists
suggests that subjects often enter a term and then enter a sequence of multiple
terms that come to mind approximately simultaneously. That is, a subject enters
term A, and quickly thinks of terms B and C which are related to A but not
necessarily related to each other; the subject then enters B and C. C is therefore a
jump if one only considers it relative to B, but not if A is also part of the context.
It is the testimony of some expert subjects that sometimes when they think of a
term they perceive a “fork” in the mental path, with two possible “threads” of
related terms that they could follow. In such a case they often try to follow one
thread while it is productive, and then return to the fork and pick up the other
thread. It seems intuitively reasonable that if the first thread is longer than about
three terms, remembering and returning to the other thread is likely to introduce
a significant thinking time, thus warranting classification as a jump.

Making explicit the criteria used to judge whether any pair of terms is related
or not has proven to be quite troublesome. Experts seem to possess an intuitive
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notion of whether terms are related, but have difficulty explicitly identifying
their criteria. In addition, experts seem to use contextual information in their
judgments, inferring what the subject was thinking while he/she entered a series
of terms, and deciding whether a term is a jump in that context.

The following list attempts to specify some of the criteria used to decide
whether a pair of terms was “relatively related”:

• They were both within a sufficiently small topic area (e.g. collisions,
graphs, angular momentum);

• They were analogous elements of a set or list (e.g. kinds of forces, units
of measure, key principles of mechanics);

• One was a subclass or special case of the other (e.g. “force” and “spring
[force]”, “motion” and “rotation”);

• One was a situation or problem type in which the other figures
significantly (e.g. “falling objects” and “gravity”, “collision” and
“impulse”);

• They were mathematically related (e.g. “work” and “impulse”,
“velocity” and “position”);

• One was a feature of the other (e.g. “slope” and “graph”, “force” and
“free-body diagram”).

This is not a complete list, but it illustrates the kinds of relationships considered.
Note that a very important question has been ignored so far: related to whom?

The original hypothesis, based on experts’ introspection on their own experience
while performing a FTE, was that long thinking times correlate with terms
unrelated to immediately preceding terms according to their own knowledge
structure. When an expert analyzing the data examines a subject’s list of
responses and identifies terms as jumps or non-jumps, however, the judgment of
relatedness is made according to the expert’s understanding of the domain, not
the subject’s. So, even if the hypothesis is completely correct and thinking times
correlate perfectly with jumps, analysis by an expert would not show a perfect
correlation unless the expert and subject were in complete agreement about what
terms are and are not strongly related.

We assume, however, that an expert with experience teaching the domain
material can make judgments based on a structure that is reasonably close to
what earnest students, or at least the more apt ones, possess. With that



62

assumption, the operational hypothesis to test is that long thinking times will
correlate noisily but significantly with jumps as perceived by an expert.

In fact, if the original hypothesis is correct and thinking times reveal what
are and are not jumps to the subject, then this task could provide a mechanism
for comparing parts of a subject’s conceptual knowledge structure to an expert’s.
If a subject entered a term after a short thinking time but the term appears to be a
jump to an expert, then perhaps the subject has attached importance to a link
which ought not to be so important; this might indicate a misconception. The
converse case seems less informative: if a subject enters a term that an expert
considers related but does so after a long thinking time, it is not clear whether
the subject does not in fact associate the term with its predecessors very strongly,
or whether he/she considered several other terms and rejected them (perhaps
because they were entered earlier in the task), or whether he/she was simply
distracted for a span of time.

But first, a correlation between thinking times and term relatedness must be
established.

3.1.2.2. Distributions of Jump and Non-Jump Thinking Times
For each of the 16 subjects in the p151s99 study, an expert in introductory

mechanics with experience teaching the subject (the author) reviewed the list of
response terms for the task J1_FTE, and classified each term as a jump or non-
jump as explained above. The set of thinking times for the subject’s task
performance was then divided into a subset containing thinking times for jumps
and a subset containing thinking times for non-jumps. Figure 3.28 shows
histograms of these two subsets for subject p151s99-01, superimposed on the
same axes. For comparison, Figure 3.29 shows the two distributions as stacked
histograms, revealing the histogram for the set of all thinking times. In keeping
with Subsection 3.1.1, the natural logarithms of the thinking times have been
used rather than the times themselves.

Figure 3.30 displays one of the noisier of such histogram comparisons, for a
subject whose data contains relatively few terms. While some of the data sets are
too noisy to identify a clear peak for both histograms, for all but one of the 16
subjects, the mean and median of the jump distribution is clearly larger than the
mean and median of the non-jump distribution. The one exception is subject
p151s99-14, whose data set contains atypically few points, resulting in atypically
sparse, noisy histograms with similar means and medians.

The general pattern is clear: for any given subject, the thinking times
associated with jumps are generally larger than the thinking times associated
with non-jumps, but the two distributions overlap significantly. There are
typically more non-jumps than jumps, although the ratio varies by subject. For
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Figure 3.28: Comparison of histograms of logarithms of thinking times for jumps
and for non-jumps, for subject p151s99-01 on task J1_FTE.
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for non-jumps, for subject p151s99-01 on task J1_FTE, revealing histogram of all
thinking times.
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Figure 3.30: Same as Figure 3.28, for subject p151s99-11.

each subject, the fraction of terms which were identified as jumps (jump rate) was
calculated; the resulting set of 16 jump rates had a mean of 0.36, standard
deviation of 0.10, minimum of 0.19, maximum of 0.54, and median of 0.35.

3.1.2.3. Predicting Jumps by Thinking Time Threshold
As previously mentioned, it could be useful to identify terms with long

thinking times which an expert classified as a non-jump, and terms with short
thinking times which an expert classified as a jump. One way to attempt this is to
define a threshold time, and predict that at all terms whose thinking times are
greater than the threshold time will be jumps, and all terms whose thinking
times are less than the threshold time will be non-jumps. Terms for which the
predicted categorization differs from the expert-assigned categorization can then
be identified for possible cognitive or pedagogic interpretation.

For each subject, define the success rate of the prediction to be the fraction of
terms for which the predicted and expert-assigned categorizations agree. To
produce a set of predicted categorizations for a subject’s FTE data, it was
necessary to specify a threshold time. Three possible methods were considered:

1. Choose a threshold time which equals the thinking time at which the
thinking-time distributions for jumps and non-jumps cross, in a plot
like Figure 3.28.
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2. Choose a threshold time which produces the same jump rate as an
expert’s categorizations;

3. Choose a threshold time which maximizes the success rate of the
resulting predictions.

Methods 1 and 3 are in fact equivalent if there are enough data points so that
the data’s discreteness is not an issue. This can be understood by looking at
Figure 3.28 or Figure 3.29 and considering a vertical line drawn at a horizontal
coordinate where the thinking time is equal to the chosen threshold time. The
total number of events to the left of that line due to both distributions is the
predicted number of non-jumps, while the total number to the right is the
predicted number of jumps. Moving that line to the right (i.e. increasing the
threshold time) increases the number of predicted jumps. Every time the line
passes a thinking time corresponding to a term entry while moving to the right,
the predicted classification of that term changes from incorrect to correct if the
term is part of the non-jump histogram, increasing the success rate; if the term is
part of the jump histogram, the success rate is decreased. Assuming the
distribution for jumps peaks farther to the right than the distribution for non-
jumps, the maximal success rate must therefore occur at the point at which the
two distribution curves (approximated by histograms) cross.

With discrete data rather than idealized continuous distributions, multiple
crossing points are possible, in which case the success rate has multiple local
maxima; the largest should be chosen. There may exist multiple maxima of equal
height, in which case a rule must be defined to resolve the ambiguity.

Figure 3.31 and Figure 3.32 show plots of success rate vs. threshold time for
the two example subjects of Figure 3.28 and Figure 3.30. The effect of discreteness
for small data sets is clearly visible: the first subject entered 174 terms, and the
second entered 67.

Table 3.3 shows optimal threshold times and the corresponding maximized
success rates for each subject as determined by method 3, calculated numerically
from the data rather than from histograms to avoid binning effects. For a given
subject, if the maximum success rate value occurred for multiple values of the
threshold time, the reported threshold time value is the logarithmic mean of
those values.

When interpreting the success rates, consider that if the threshold-time
prediction and the expert assignment are perfectly correlated, the success rate
will be 1; if they are completely uncorrelated, it will have a statistical expectation
value of 

    
f f f fp j p j+ −( ) −( )1 1 , where   fp  is the jump rate according to the threshold-

time prediction, and   fj  is the jump rate according to the expert’s categorization
judgments. The table includes columns for the jump rate according to the expert
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judgments, the jump rate according to the threshold prediction, and the success
rate expected if the predictions and judgments were uncorrelated.
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Figure 3.31: Success rate vs. threshold time for jump/non-jump prediction, for
subject p151s99-01 on task J1_FTE (174 terms entered).
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Figure 3.32: Same as Figure 3.31, for subject p151s99-11 (67 terms entered).
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 subject
cutoff 
t i m e

cutoff 
time 
l n ( )

max 
success 

r a t e

judged 
jump 
r a t e

pred. 
jump 
r a t e

uncor. 
success 

r a t e

error 
rate 

r a t i o
p151s99-01 20.67 3 .03 0 .85 0 .19 0 .08 0 .76 0 .63

- 0 2 14.03 2.64 0.79 0.30 0.20 0.62 0.56
- 0 3 7.00 1.95 0.79 0.40 0.44 0.51 0.43
- 0 4 18.74 2.93 0.72 0.42 0.23 0.54 0.61
- 0 5 3.86 1.35 0.70 0.54 0.60 0.51 0.61
- 0 6 7.00 1.95 0.87 0.27 0.26 0.61 0.33
- 0 7 10.53 2.35 0.79 0.43 0.27 0.53 0.45
- 0 8 2.54 0.93 0.79 0.46 0.63 0.49 0.42
- 0 9 13.22 2.58 0.77 0.33 0.33 0.56 0.52
- 1 0 19.12 2.95 0.86 0.24 0.08 0.71 0.49
- 1 1 4.07 1.40 0.83 0.46 0.48 0.50 0.33
- 1 2 11.99 2.48 0.94 0.25 0.22 0.64 0.17
- 1 3 14.13 2.65 0.84 0.32 0.24 0.59 0.40
- 1 4 22.94 3.13 0.77 0.28 0.05 0.70 0.77
- 1 5 3.82 1.34 0.70 0.46 0.48 0.50 0.60
- 1 6 8.39 2.13 0.79 0.37 0.32 0.55 0.45

Table 3.3: Selected threshold times and corresponding success rates for
comparison of predicted and expert-judged “jump” vs. “non-jump” term
categorization, for p151s99 study, task J1_FTE; with comparison to success rate
expected if prediction and expert judgment are uncorrelated (see text).

Define the error rate of a prediction to be the success rate subtracted from
one; that is, the fraction of terms that were mispredicted. The final column shows
the ratio of the error rate of the prediction to the error rate expected for
uncorrelated predictions; values less than one indicate a smaller error rate (better
prediction), while values greater than one indicate a higher error rate (poorer
prediction). The average of that ratio across subjects is 0.49, indicating that the
threshold-time prediction method employed in this section produces about half
the errors that would be obtained by a random coin-toss with bias equal to the
number in the “predicted jump rate” column.

Whether the listed success rates are considered adequate depends on the use
one intends for the resulting predictions. For an ideal case where a subject’s
distribution of thinking times fell into two distinct peaks, and where an expert
judged most of the terms comprising the first peak to be non-jumps and most in
the second peak to be jumps, identifying the few jumps in the first peak and the
few non-jumps in the second peak would likely be of value for pedagogic and
research purposes. For such a case, the threshold method described above would
suffice. But for a case like that displayed in Figure 3.28, the threshold method
seriously overpredicts the number of non-jumps. If the threshold is selected by
methods 1 or 3, almost all terms are predicted to be non-jumps. As a result, the
majority of jumps are mispredicted as non-jumps.
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As discussed at the end of Subsubsection 3.1.2.1 above, jumps with the
timing signature of non-jumps are likely to be of more cognitive and pedagogic
interest than the converse case. The threshold method tends to overpredict such
events, reducing their usefulness. Threshold-determination method 2, requiring
the jump rate to be the same for predictions and expert judgments, would force
the threshold line left of the histograms’ crossing point on a case like that of
Figure 3.28, reducing the number of falsely predicted non-jumps at the expense
of very sharply increasing the number of falsely predicted jumps. This might be
of benefit to a cognitive or pedagogic analysis. Without a specific analysis in
mind, further discussion is not fruitful.

3.1.2.4. Incorporating Elapsed Task Time in Jump Predictions
Figure 3.33 shows a plot of thinking time vs. start time for an example

subject. Each data point represents one term-entry event, and the horizontal axis
indicates the start time of the event (the time elapsed in the task when the term
was entered). Data point markers indicate whether each term was classified as a
non-jump (cross) or jump (circle) by the expert judge.

Examining such plots for all subjects in the p151s99 study reveals some
general trends:

1. Thinking times are scattered within an envelope that increases as the
task progresses (i.e. as start time increases), in agreement with the
discussion on decreasing term entry density in Subsection 3.1.1.5.

2. The density of jumps relative to non-jumps is higher in the later part of
the task than in the earlier part.

3. Overall, jumps have larger thinking times than non-jumps, in
agreement with the previous section’s findings.

In this representation, the threshold time prediction method of the previous
section corresponds to drawing a horizontal line through the plot, and predicting
that all points above the line correspond to jumps and all points below the line
correspond to non-jumps. The fact that no such line cleanly divides the jump
points from the non-jump points is consistent with the fact that the two
histograms of Figure 3.28 overlap.

It is likely that a non-horizontal line, or even some kind of parameterized
curve, might be more successful at partitioning the jumps from the non-jumps.
This is equivalent to modifying the threshold-time prediction method to use a
threshold that varies with elapsed task time (start time). Although success rates
for such a method have not been calculated, examining graphs like Figure 3.33
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for all subjects in the p151s99 study suggests that for some subjects it would be
significantly more successful, while for others (including the example subject
shown above) the improvement would be minor. Again, whether such methods
are useful depends on the purpose one has for the results.
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Figure 3.33: Term thinking time vs. term start time (relative to beginning of task)
for subject p151s99-01 on task J1_FTE. Symbols indicate expert’s classification of
terms (see text).

3.1.2.5. Suggestions for Further Research
The line of inquiry discussed here in Section 3.1.1 could be pursued in

several ways. One would be to reduce the noise introduced by the expert’s
judgment of which terms should be categorized as jumps or non-jumps. A
simple improvement would be to have a panel of experts make the judgments,
rather than one expert. Explicitly identifying criteria for the experts to apply
should aid consistency of judgment.

Going a step further in this direction, a “reference proximity matrix” could
be constructed, with each cell containing a numerical value representing the
proximity or “relatedness” of a pair of terms. Constructing such a matrix would
be a laborious task, perhaps achieved by subjecting several experts to a “term
proximity judgment” (TPJ) task (cf. Section 2.1.3.6). Once the matrix exists, a rule
could be defined which categorizes terms as jumps or non-jumps according to a
numerical criterion based on that term’s proximity values to a specified number
of preceding terms. As a coincidental benefit, comparing a matrix-based
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categorization to an expert’s subjective judgment might shed light on the
relationship of considered, TPJ-style judgments to subjective judgments in the
context of a FTE response list.

The original hypothesis with which we started was that short thinking times
correspond to successions of related terms, while long thinking times correspond
to jumps to unrelated terms, from the subject’s point of view. As described then,
comparing subject thinking times to expert categorizations confounds this
correlation with the correlation between subjects’ and experts’ sense of term
relatedness. This confounding could be eliminated by giving subjects another
task which extracts their sense of what terms are related, perhaps a TPJ-style
task. Note that the time required for a TPJ task could be reduced significantly by
only filling in the elements of the matrix corresponding to the term pairs needed
for categorizing terms in the subject’s FTE response list; this reduces the order N2

general TPJ problem to an order N problem. For term lists of 100 terms or more,
this is a crucial improvement.

3.1.2.6. Conclusions
The analysis described in Section 3.1.1 found that there exists evidence to

connect FTE thinking times with the conceptual relatedness of the corresponding
terms. The correlation is noisy, however, and confounded because an expert’s
judgment of what terms subjects ought to relate was substituted for the subjects’
own conceptual associations. Nevertheless, the line of inquiry is promising, and
some follow-up research has been suggested which would remove the
confounding problem and better answer the question of how the timing
information in FTE tasks relates to subjects’ conceptual knowledge structure.

3.1.3. FTE Jump Rates vs. Exam Scores
The previous subsection (3.1.1) sought evidence of conceptual structure in a

subject’s FTE responses by correlating thinking times with the presence or
absence of “jumps” to locally unrelated terms in the sequence of term responses.
This section examines whether the frequency with which such jumps occur in a
subject’s response list correlates with his/her mastery of the domain material, as
measured by course exam scores. Although exam scores are not likely to capture
subjects’ level of expert-like structuring in their conceptual knowledge store (a
fact central to the motivation of this entire body of research), no other measure
independent of the experimental ConMap data was available, so exam scores
were employed.
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3.1.3.1. The Idea
By hypothesis, the less well-structured a subject’s relevant domain

knowledge is, the more frequently terms in their response sequence will appear
to be unrelated to immediately preceding terms. We expect that a subject with
richly structured knowledge could easily “walk” that structure, with each term
they enter suggesting other related terms. In contrast, we expect the response
pattern of a subject with amorphous, poorly-structured knowledge to appear
much more random, with more frequent leaps from one subdomain to another.

As before, define a term-entry event in an FTE response list to be a “jump” if
it does not appear to be “reasonably related” to one of the few immediately-
preceding response terms, according to a domain expert’s judgment. For the
analysis of this section, the jump/non-jump identifications of the previous
section’s analysis were used. Define a subject’s jump rate on a FTE task to be the
number of such jumps divided by the total number of response terms (not
including the first). A jump rate of 0 would indicate that every term is related to
one of the previous few terms; a jump rate of 1 would indicate that every term
was unrelated to all of the previous few.

3.1.3.2. Analysis
The p152f97, p151s99, and p172s99 studies each presented subjects with one

FTE task. For each subject in each of these studies, a jump rate for their FTE
response list was calculated. The degree of correlation between subjects’ jump
rates and their exam scores was checked for each of the exams in the relevant
course. For each exam, a scatterplot of FTE jump rate vs. exam score was
constructed, with each data point representing one subject. A line was fit to the
plot, and “Pearson’s r-value”, a measure of the significance of the correlation,
was extracted from the fitting procedure. Figure 3.34 shows an example of such a
plot.

The p152f97 study was conducted at the end of the Physics 152 course, on the
material from that course (thermodynamics, electricity and magnetism); subjects’
FTE jump rates from that study were compared with their exam performance on
each of the exams during Physics 152. The FTE task of p151s99 study was
conducted at the end of the Physics 151 course, on material from that course
(mechanics), and subject’s jump rates were compared with their exam
performance on each of their Physics 151 exams. The FTE task of the p172f99
study was conducted at the end of Physics 172, on material from Physics 171
(mechanics), which the subjects had taken the previous semester; subjects’ FTE
jump rates were compared with their exam performance on each of the exams
during Physics 171.
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Figure 3.34: Subject FTE jump rate vs. Exam 2 score for p152f97 study.

During the identification of “jumps”, we noticed a general trend: more jumps
seemed to occur in the second half of the FTE response sequence than in the first.
This agrees with subjects’ testimony when interviewed: toward the end of an
FTE task, subjects generally experience a greater sense of “hunting around” in
their memories for terms that they haven't yet entered, whereas in the beginning
they enter terms almost continuously.

This suggests that the first half of the FTE response sequence may be a better
indicator of structure than the later part. We therefore repeated the comparison
of r-values with exam scores, using only the first half of each subject’s FTE
response sequence to calculate a jump rate.

For the p152f97 study, Table 3.4 shows r-values for the correlation between
subjects’ jump rates and their various exam scores. Table 3.5 shows results for the
same calculation for the p151s99 study’s J1_FTE task. Table 3.6 shows the same
for the p172s99 study’s B1_FTE task.

Exam 1 Exam 2 Exam 3 Final

all responses -0.489 -0.650 -0.059 -0.665

first 1/2 responses -0.244 -0.586 -0.587 -0.506

Table 3.4: Pearson’s r-value for correlation between subject jump rates and exam
scores in p152f97 FTE task. r > 0 12.  for statistical significance with an 18-point
sample.
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Exam 1 Exam 2 Exam 3 Final

all responses -0.067 -0.44 -0.053 -0.091

first 1/2 responses -0.36 -0.59 -0.32 -0.20

Table 3.5: Pearson’s r-value for correlation between subject jump rates and exam
scores in p151s99 J1_FTE task. r > 0 13.  for statistical significance with a 16-point
sample.

Exam 1 Exam 2 Final

all responses 0.679 0.677 0.648

first 1/2 responses 0.827 0.804 0.730

Table 3.6: Pearson’s r-value for correlation between subject jump rates and exam
scores in p172s99 B1_FTE task. r > 0 25.  for statistical significance with a 5-point
sample.

mean jump rate mean jump rate

(all responses) (first half)

p151s99 0.319 (0.125) 0.263 (0.122)

p172s99 0.419 (0.097) 0.351 (0.091)

P152f97 0.450 (0.073) 0.408 (0.077)

Table 3.7: Mean jump rates for p151s99, p172s99, and p152f97 populations on
their respective FTE tasks. Numbers in parentheses indicate the corresponding
standard deviations.

To compare the mean jump rates of the different study populations, all
subjects’ FTE jump rates were averaged within each study population, for both
the whole and first-half data sets. Table 3.7 displays the results, with parentheses
indicating the corresponding standard deviations.

3.1.3.3. Discussion
For the p152f97 data, all calculated coefficients of correlation are above the

threshold for statistical significance, indicating an unquestionable (though
perhaps noisy) correlation. Three of the four r-values are slightly lower for the
half-data sets than for the full data sets, and the fourth is nearly identical, weakly
suggesting that jump rate during the later part of the FTE is a slightly better
predictor of ability than jump rate during the earlier part. This is contrary to our
hypothesis about first-half jump rates.
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For the p151s99 data, calculated r-values are above the statistical significance
threshold for one of the four exams when calculated from entire response
sequences, but exceed the threshold for all four exams when calculated from
first-half response sequences. Ignoring the second half of the response sequences
significantly increases the r-value for each exam comparison, suggesting that
jump rate during the first part of the FTE task is a better predictor of ability than
jump rate during the second part.

For the p172s99 data, calculated r-values are well above the statistical
significance threshold, even though that threshold is higher than for the other
two studies since this study only included five subjects. Unfortunately, the
correlation is positive, whereas it is negative for the other two studies. If taken
seriously, this would suggest that students who do better on exams have higher
jump rates.

Looking at the plots for the p172s99 data, it appears that the strong positive
correlation is entirely attributable to two outlying subjects: one with very weak
exam scores and a very low jump rate, and another with very strong exam scores
and a very high jump rate. The other three subjects are all clustered in the middle
on both axes. This suggests that the strong positive correlation may be an artifact
of two atypical subjects. The subject with top exam scores and high jump rate
was in fact a high-school student at the time, taking Physics 171 and 172 for high-
school credit; this makes him a rather atypical subject.

Overall, the evidence suggests that jump rate correlates (albeit noisily) with
exam performance. The evidence is less clear, but still suggestive, that the early
part of the FTE response sequence correlates more strongly. When considering
the discrepancy between the p151s99 and p152f97 results — specifically, the fact
that for one the first-half data sets correlated more strongly with exam scores
than did the entire data sets, while for the other it correlated more weakly — it is
important to note that task conditions for the two groups were different in many
ways. For one thing, p151f97 subjects were given approximately 45 minutes for
the task, while p151s99 subjects were given 30 minutes. For another, the FTE task
was the only task in the only session p152f97 subjects underwent, whereas it was
presented to the p151s99 subjects during their tenth session of tasks.

Regarding the comparison between the mean jump rates for p151s99 and
p172s99 groups: one might expect the p172s99 group to show more of a signature
for “expertise”, since the subjects took a more advanced version of the
introductory mechanics course, and since only students who survived the course
well enough to continue in Physics 172 were in the sample. On the other hand, an
entire semester had passed between their completion of the relevant course and
their participation in the ConMap study, which might have a significant effect on
term recall and knowledge structure. In addition, all five subjects had taken the
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sequel course Physics 172 during the intervening semester, which might have
impacted their knowledge structure and recall, perhaps “diluting” it with the
addition of new links.

3.1.3.4. Suggestions for Future Research
The correlation between jump rate and exam performance seems strong

enough to warrant further study. Improving the procedure for identifying jumps,
as discussed in Section 3.1.2.5, would be of benefit.

A better indicator of conceptual domain expertise than course exam scores is
crucial. The study should be repeated, presenting subjects with a “problem-
solving task” along with a FTE task. The new task should require subjects to
solve carefully-crafted problems designed to test conceptual understanding of
the domain material. This should remove a tremendous amount of noise and
confounding from the correlation being studied and allow a more reasonable
assessment of the hypothesis that FTE jump rate correlates with expertise.

3.1.4. Summary of FTE Findings
To summarize the findings of Section 3.1: the timing information contained

in a subject’s FTE response list data can be separated into a set of thinking times
which describe the approximate amount of time the subject spent thinking about
each term, and a set of typing times which describe the approximate amount of
time the subject spent typing each term. For an entire response list, the set of
thinking times approximately follows a log-normal distribution, although for
most subjects there is a narrow, tall spike superimposed on the leading edge of
the generally Gaussian peak when the distribution is viewed on a logarithmic
scale. The typing times do not display this peak. When individual subjects’ sets
of thinking time logarithms were rescaled to a common mean and width and
then aggregated together, the resulting aggregate set displayed a clear two-
peaked shape which was fit well by a linear combination of two Gaussian peaks.
Individual data sets were in general too noisy to fit well with this five-parameter
curve, however.

In checking the hypothesis that at least some subjects thought about their
next terms while typing a term, it was found that there was no correlation
between a term entry event’s thinking time and the previous event’s typing time.
If significant thinking occurred during typing, one might expect to see an inverse
correlation. A few subjects showed a slight tendency for longer thinking times to
follow longer typing times, a phenomenon which has various plausible
explanations.

Subjects’ response lists showed a general pattern of decreasing density,
meaning that the number of terms entered per unit time, suitably averaged,
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decreased throughout the duration of the task. Density fluctuations were
significant, however, so the decrease was not smooth even when averaging over
a moving window 1/4 the duration of the entire task. All subjects’ highest rate of
term entry occurred near the beginning of the task, but not all had even
approximately monotonic rate decreases throughout.

The “density fluctuations” in term entry rate give the appearance that term
entry events tend to occur in clusters, but a check for a correlation between the
thinking time for an event and the previous event’s thinking time was negative,
suggesting that the apparent clustering is statistically equivalent to the random
fluctuations observable if thinking times were independently drawn from an
appropriate random distribution. This is not a statement about any lack of
meaning conveyed by the clustering, but merely an observation about the
statistical properties of the data.

Section 3.1.1 investigated the hypothesis that longer thinking times in a
subject’s FTE response list are associated with jumps in the list of terms, where a
jump is defined to be the entering of a term which is not strongly related to one
of the previous few terms entered. Without a mechanism to determine how
strongly a subject associates term pairs, it was necessary to compare thinking
times to an expert’s assessment of how related pairs of terms should be for
student subjects. Each subjects’ set of thinking times was partitioned into two
subsets, one for the events classified as jumps and one for the non-jumps. For
each subject, the two sets were distinctly different, with the distribution of jumps
having its peak at a larger value of thinking time. The two sets overlapped
significantly, however.

A simple threshold rule was defined which predicted each term entry event
to be a jump or non-jump based on only its thinking time. With optimal choice of
thinking time, such predictions were moderately successful for most subjects,
making on average one-half the number of erroneous predictions as would have
been made by a coin-toss biased to the same ratio of jumps to non-jumps. In
particular, the rule underpredicts jumps, which may be detrimental to likely
cognitive and pedagogic uses of this kind of analysis.

Elaborations of the threshold rule that employ information about how
thinking times correlate with elapsed task time might improve predictions
somewhat, but it is clear thinking time does not correlate strongly enough with
the expert’s categorizations for any rule to predict significantly greater success.

Section 3.1.3 investigated the hypothesis that subjects’ jump rates — the
fraction of term entry events categorized by an expert as jumps — on FTE tasks
should correlate inversely with their level of expertise in the domain material
and therefore with their performance on associated course exams. Calculations of
Pearson’s r-value for subject jump rates against exam score, by study population
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and exam, show a significant correlation as expected. There is some weak
evidence that jump rates for the first half of subjects’ response lists correlate more
strongly, at least for the p151s99 study.

Overall, analysis of data from FTE tasks indicates that this task does in some
ways probe subjects’ knowledge structure, and therefore further study is
merited.

3.2. Hand-Drawn Concept Map (HDCM) Data Analysis
Unlike most of the ConMap tasks, the Hand-Drawn Concept Map (HDCM)

task was not computer-administered. Instead, subjects were provided with a
large (11 inches by 17 inches) piece of blank paper and a pencil, and instructed to
draw a concept map elaborating a given prompt term. A clock display on the
computer counted down the remaining time in the task. The data collected
consisted of each subject’s drawn map.

This section presents a brief phenomenological description of maps drawn
during the p151s99 study. The p172s99 study also employed the HDCM task, but
since it only included five subjects, data from that study is not discussed here. In
the p151s99 study, HDCM tasks were given during Sessions B, G, H, and J. The
prompt terms given were “force”, “energy”, “momentum”, and “force”
respectively, with time limits of 8, 10, 10, and 10 minutes.

Subsection 3.2.1 defines and presents some quantitative measures of the data.
Subsection 3.2.2 examines these quantities for possible correlations with subjects’
course exam performance. Since the primary purpose that the HDCM task was
intended to serve in the study was as a basis for comparison with the TPTE task,
no further analysis of HDCM data is discussed in this section; subsection 3.3.6
compares TPTE data with HDCM data. Subsection 3.2.3 summarizes the findings
of the section.

3.2.1. Data Quantification
In order to allow some quantitative analysis, some measures of subjects’

HDCM task maps were tabulated. For each map, the node count (the number of
nodes included by the subject, excluding the node containing the prompt term)
was determined, as was the link count (the number of inter-node links). The ratio
of link count to node count was computed. Each node was assigned a level
indicating how far removed the node was from the prompt node: nodes directly
linked to the prompt node were defined to be at level one; nodes directly linked
to a level-one node but not the prompt node were defined to be level two; and so
on for as many levels as was necessary to describe the entire map. For each map,
the level counts — the number of nodes assigned each level number — were
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tabulated. Table 3.8 displays these quantities for each subjects’ map from the
H2_HDCM task. Similar tables were constructed for the other three HDCM tasks
of the study (not shown here).

subjec t #nodes # l i n k s r a t i o level counts

p151s99-01 2 1 3 4 1.62 {9, 10, 2}

p151s99-02 1 8 2 9 1.61 {9, 8, 1}

p151s99-03 1 6 2 2 1.38 {5, 6, 4, 1}

p151s99-04 2 3 3 5 1.52 {5, 10, 5, 1, 1, 1}

p151s99-05 1 6 1 9 1.19 {7, 6, 3}

p151s99-06 3 1 3 7 1.19 {4, 9, 6, 4, 5, 3}

p151s99-07 4 0 7 3 1.83 {6, 14, 18, 2}

p151s99-08 3 7 5 6 1.51 {8, 11, 10, 8}

p151s99-09 2 9 5 2 1.79 {9, 13, 7}

p151s99-10 9 1 0 1.11 {6, 3}

p151s99-11 2 0 2 3 1.15 {4, 10, 5, 1}

p151s99-12 3 2 4 2 1.31 {12, 10, 5, 5}

p151s99-13 2 4 4 5 1.88 {10, 12, 1, 1}

p151s99-14 2 5 3 9 1.56 {4, 8, 6, 6, 1}

p151s99-15 2 5 3 3 1.32 {6, 11, 7, 1}

p151s99-16 2 9 4 7 1.62 {5, 11, 8, 5}

Table 3.8: HDCM Statistics for subjects’ maps from task H2_HDCM. See text for
column definitions.

A few subjects misunderstood the task instructions and drew maps with
invalid constructs. Two kinds of invalid construct were encountered: duplicate
nodes and branching links. In order to analyze these maps and generate the
quantitative data required, an “equivalent” valid map construct was created to
replace each invalid construct, and analysis proceeded with the valid constructs.

A duplicate node occurred when the subject put more than one node
containing the same term on a map. To create an equivalent valid construct, this
was corrected by treating all duplicate nodes as if they were topologically one
node. Thus, all duplicate versions would have the same level, determined by the
level of the one nearest to the prompt term node.

Branching links occurred when a subject drew a line that had branches or
intersections, so that it connected more than two nodes together. Determining an
equivalent valid construct required a subjective judgment to be made about the
subject’s intentions when drawing the branching link, which were not always
obvious. For example, if a link from node A forked to connect to nodes B and C,
should that be replaced by three valid links connecting all three pairs of nodes, or
only links from A to each of B and C? The decisions made during analysis in
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such cases were based on the lengths and shapes of the drawn lines and the
angles at the fork, as well as on the interpretation that seemed likely given the
meanings of the node terms.

3.2.2. Correlations with Exam Performance
To investigate whether gross numerical measures of subjects’ drawn maps

correlate with their course exam performance, scatterplots were constructed to
determine whether the node counts of subjects’ maps, the link counts, or the ratio
of links to nodes correlated with subjects’ exam scores. Figure 3.35 shows each
subject’s node count for task H2_HDCM, plotted against the sum of the subject’s
raw exam scores over the semester. Figure 3.36 shows link counts against exam
score. Figure 3.37 shows the ratio of links to nodes against exam score. All plots
display the best-fit line, with the associated coefficient of correlation r.

The plots shown for H2_HDCM are typical of all four HDCM tasks in the
study. Table 3.9 displays the coefficients of correlation resulting from linear fits
to these plots and equivalent plots for the other three HDCM tasks. For
B1_HDCM, G2_HDCM, and H2_HDCM, the statistical significance threshold is
0.130 for sixteen data points. For J4_HDCM, the statistical significance threshold
is 0.136 for 15 data points, since one subject missed that task due to logistical
problems during administration of the session.
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Figure 3.35: HDCM node counts vs. subject’s course exam performance, for task
H2_HDCM of p151s99 study. The best-fit line and coefficient of correlation are
indicated.
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Figure 3.36: HDCM link counts vs. subject’s course exam performance, for task
H2_HDCM of p151s99 study. The best-fit line and coefficient of correlation are
indicated.
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Figure 3.37: Ratio of link count to node count vs. subject’s course exam
performance, for task H2_HDCM of p151s99 study. The best-fit line and
coefficient of correlation are indicated.
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 Task
#nodes vs. 
exam score

#links vs. 
exam score

 ratio vs.  
exam score

 B1_HDCM 0.444 0.217 - 0 . 0 5 7

 G2_HDCM 0.169 0.181 0.176

 H2_HDCM 0.097 0.152 0.318

 J4_HDCM 0.116 0.140 0.095

coefficient of correlation ( r )

Table 3.9: Coefficients of correlation for plots of node count vs. exam score, link
count vs. exam score, and link/node ratio vs. exam score for all four HDCM
tasks in the p151s99 study.

According to the table, evidence in favor of a correlation between any of the
three map-characterizing quantities and exam performance exists, but is weak.
Two of the four r-values for node count against exam score are above the
statistical significance threshold, one by a large margin, and all four are positive;
this suggests subjects with better exam performance tend to include more nodes
in their concept maps. All four of the r-values for link count against exam score
are above the statistical significance threshold, and all positive, suggesting that
subjects with better exam performance do tend to include more links in their
concept maps — not surprising if they include more nodes. Two of the four r-
values for link to node ratio are above the significance threshold, one by a
relatively large margin, although one of the two below-threshold values is
negative; this suggests weakly that subjects with better exam performance might
include more links per node in their maps.

As discussed elsewhere, exam performance is not expected to be a strong,
clean indicator of the kind of conceptual expertise and knowledge structuring
that concept maps and other ConMap tasks were designed to probe. The fact that
a strong correlation was not found here is therefore not surprising. One possible
explanation for the evidence found in support of a weak positive correlation is
that more earnest, dedicated students are likely to do better on course exams,
and also likely to put more effort into drawing and elaborating concept maps for
the study.

Further study along the lines in this subsection should use a more
appropriate standard of comparison than course exam scores. Conceptually
difficult, quantitatively easy problems chosen specifically for the study might be
more suitable. Another improvement might be to count only “relevant” and
“correct” nodes and links, as judged by a domain expert; it is possible that less
able subjects pad their concept maps with relatively worthless nodes and links.
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3.2.3. Summary of HDCM Findings
This section introduced some quantitative measures derived from subjects’

hand-drawn concept maps, for use here and in comparisons with TPTE data. The
level of a node was defined as it’s topological distance form the map’s prompt
node. Total node counts, link counts, link to node ratios, and node counts by
level were tabulated. Mechanisms for dealing with invalidly drawn maps were
discussed.

Weak evidence was presented suggesting that node and link counts and link
to node ratios might correlate with subject’s exam scores.

Further analysis of HDCM data can be found in subsection 3.3.6, where the
content of TPTE data and HDCM data is compared.

3.3. Term-Prompted Term Entry (TPTE) Data Analysis
As described in Subsection 2.1.3.2, the Term-Prompted Term Entry (TPTE)

task presents subjects with a series of prompt terms. For each prompt term, they
are required to type response terms that they associate with the prompt term.
Their entering of response terms is cut off after they have entered ten terms, or
the first time they pause without typing for ten seconds (unless they have not yet
entered a specified minimum term count, usually three). They are then presented
with the next prompt term. As with the FTE, the raw data collected consists of
the list of response terms entered, along with the times at which the subject
started and finished typing each.

Section 3.1 presents the analysis performed to date on the TPTE data
collected. Since the p151s99 study was the only study conducted which
employed the TPTE task and which included enough subjects for reasonable
analysis, only that study is discussed here. Subsection 3.3.1 explains the “term
mapping” mechanism used to facilitate TPTE analysis. Subsection 3.3.2 analyzes
the statistics of response term counts, the number of terms a subject entered in
response to a prompt term. Subsection 3.3.3 presents term frequencies, the
number of subjects entering a specific response term to a particular prompt and
session.

Subsection 3.3.4 defines a measure called similarity to quantify the degree to
which a subject’s responses are typical or atypical of the general study
population, and investigates whether similarity values are characteristic of
individual subjects or prompts, and whether they vary systematically by session
over the study. Subsection 3.3.5 introduces a rubric for scoring TPTE response
lists according to domain experts’ opinions of how relevant and insightful the
response terms are, and looks for evidence that the resulting scores correlate with
subjects’ degree of domain mastery. Subsection 3.3.6 compares the data from
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TPTE and HDCM tasks to see whether the two types of task reveal similar
information about subjects. Finally, Subsection 3.3.7 summarizes the section’s
findings about the TPTE task and makes some suggestions for further research.

3.3.1. TPTE Term Mapping for Standardization
Much of the analysis done on TPTE data was based on the terms subjects

entered as responses, not merely on the timing information associated with term
entry. Since subjects were free to enter their own idiosyncratic choices of spelling,
phraseology, and even concept representation, a method was necessary for
comparing terms based on their meaning rather than on the character strings
themselves. To that end, an ad hoc “term mapping” methodology was developed.

For each TPTE prompt term, the union of all subjects’ response list terms was
formed, resulting in a list of all terms entered by any subject in the study. Each of
these raw terms was mapped to a standardized term to which it was considered
equivalent, and which would be used for further analysis. For many of the terms,
the raw and standardized versions were identical. For misspelled terms, the
standardized term was a corrected version of the raw term. For sets of raw terms
with the same meaning but different word choice or ordering or tense, one form
was chosen as the standardized form, and all of the equivalent raw terms were
associated with that one standardized term (“many-to-one mapping”).

Because some subjects typed in algebraic representations of formulas (e.g.
“mv”) and others typed verbalized versions (e.g. “mass times velocity” or “mass
* velocity”), all such mathematical expressions were considered equivalent and
mapped to one standardized form. In cases where the left-hand side of an
equation was clearly implied by the prompt term, forms with and without it
were considered equivalent (e.g. “f = ma” vs. “mass * acceleration” when the
prompt term was “force”). Formulas and their names (e.g. “f = ma” and
“Newton’s second law”) were not considered equivalent, since this difference of
representation could be significant and cognitively revealing. Other clearly
implied words were supplied in the standardized form (e.g. “conservation of”
was mapped to “conservation of energy” if the prompt term was “energy”).

A few raw terms were considered to be lists of multiple distinct terms (e.g.
“inelastic/elastic”, “friction or frictionless”) and were mapped to more than one
standardized term. As a result, a few response lists were treated as having 11
responses, even though the task specified an upper limit of 10.

The mapping scheme has been characterized as ad hoc because there were
many cases where two raw terms did not have exactly the same meaning but
were quite close, necessitating a subjective judgment as to whether they should
be mapped to the same standardized term. No explicit criteria were identified as
to how this decision should be made in each case; a domain expert (the author)
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made a subjective judgment on the matter. A more sophisticated analysis scheme
would probably include some kind of hierarchical categorization scheme, in
which terms could be identified as equivalent or not at whatever degree of detail
the analysis in question demanded.

3.3.2. Response Counts
In the p151s99 study, 16 subjects were presented with 52 TPTE prompts

distributed among seven of the ten study sessions. For the 52 prompts, 28 unique
prompt terms were employed, a few once, most twice, and a few three times.
With 16 subjects and 52 response lists per subject, the total number of TPTE
response lists collected throughout the study was 832.

The maximum number of responses allowed per prompt term was ten. The
minimum was generally three; for the six prompt terms of Session A, however,
the minimum was one. For all subjects, TPTE tasks, and prompts in the study,
the mean number of responses per list was 6.68, with a standard deviation of
2.62; the median was seven. Figure 3.38 shows a normalized histogram of the
response counts.

Figure 3.39 displays each subject’s mean number of responses per prompt,
averaged over all prompts in all TPTE tasks in the study. Error bars indicate the
associated standard deviation (not standard error). It is clear that some subjects
were regularly more prolific than others. For example, subject p151s99-15 usually
entered nine or ten terms, while subject p151s99-10 typically entered between
three and seven. This raises the question of whether subjects’ mean response
counts might correlate with their general domain competency. To investigate
this, a scatterplot of subject mean response count vs. course exam score was
constructed, and is shown in Figure 3.40.

According to the plot and coefficient of correlation (r-value) calculation,
there is a statistically significant but extremely noisy correlation. The correlation
would vanish if the two subjects with the lowest exam scores were omitted,
raising doubt about the real “significance” of the correlation. Further study with
more subjects and cleaner data is required to resolve the issue.

For  each prompt term in each task, an average response count across
subjects was calculated. The resulting set of 52 averages had a mean of 6.7, of
course. More interestingly, the set of 52 averages had a standard deviation of 1.2,
indicating that there was some characteristic variation by prompt term and
session, but that this variation was not strong. By comparison, the standard
deviation of the subjects’ mean response counts (as displayed in Figure 3.39) was
1.5. It appears that response term counts vary more by subject than by prompt.
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Figure 3.38: Histogram of response counts for all TPTE tasks/prompts in the
p151s99 study. Total number of counts was 832.
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Error bars indicate the standard deviation of the set of term counts.



86

10

9

8

7

6

5

4

m
ea

n 
re

sp
on

se
 c

ou
nt

90807060504030
sum of raw exam scores

1

2 3

4

5

6

7

8

9

10
11

12

13

14

15

16

p151s99: All TPTE tasks
r = 0.313
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Figure 3.41: Mean number of response terms by session, averaged across subjects
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etc.)
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Figure 3.41 shows mean response term counts by session, averaged across
subjects and prompts. A suggestive trend is evident: mean response counts
appear to drop monotonically and significantly — by about two terms per
session — through the first five sessions. Response counts rise again for the last
two TPTE tasks, which occur in sessions H (8) and J (10). (Sessions F (6), G (7),
and I (9) did not include a TPTE task.) It is difficult to posit an explanation for the
trend, because many factors varied from session to session, such as:

• subjects became more familiar with the task and study;

• subjects were exposed to additional course material;

• the prompt terms employed varied in a way that partially tracked the
course syllabus, but later sessions were more likely to include “review”
terms from earlier topics;

• prompts in later sessions were more likely to be repeats that subjects
had seen in earlier sessions, because prompt terms were usually
repeated two or three times.

No comparisons of different termination criteria have yet been conducted.
Analysis of whether response counts correlate with the specific prompt term
used, independent of session, has yet to be done.

Overall, there is evidence that the number of response terms subjects
typically enter to a TPTE prompt might be an informative quantity for cognitive
and pedagogic purposes, and further study is warranted. Alternative task-
termination criteria should be investigated, as the set of criteria chosen will
directly influence the number of responses subjects can enter and might strongly
impact the usefulness and noisiness of the response-count measure.

3.3.3. Response Term Frequencies

3.3.3.1. Tabulation of Frequencies
For a particular session/task and prompt term, a list of all response terms

entered by all subjects in the study could be compiled, and the number of
subjects entering each term in the list could be tabulated and examined. This was
done for the eight prompt terms “force”, “energy”, “inclined plane”, “potential”,
“momentum”, “power”, “impulse”, and “spring” in each of the sessions in which
they appeared. Before compiling the list and tabulating the frequencies, all terms
were standardized as described in Subsection 3.3.1. Table 3.10 shows the
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resulting frequencies of occurrence for responses to the prompt “force”, for the
three sessions in which it was presented.

The pattern observed for the prompt “force” was common to all eight of the
prompts whose frequency tables were inspected: of typically 40 or so unique
responses (after standardization), around half were idiosyncratic to one subject,
perhaps a third to a sixth of the terms were entered by at least a quarter of the
subjects, and five or fewer were entered by at least half of the subjects. For the
prompt “force”, the most popular four responses were responsible for 1/3 of the
counts in Sessions B and J, and almost that large a fraction in Session C. This
pattern is also typical of the other prompts.

Some prompts elicited more agreement among subjects (higher frequencies
for a core set of terms) than others. “Force” and “potential” produced higher
frequencies, while “impulse” and “power” had few common terms and many
idiosyncratic to one subject. For the most part, the small set of most popular
responses remained approximately the same session to session for each prompt,
although their frequencies might vary slightly.

Some interesting differences between sessions were evident in the data,
although their interpretation is not obvious. In Table 3.10, it can be seen that the
term “F = m a” (or an equivalent term which was mapped to that) was entered
by eight of the sixteen subjects during Session B; by four during Session C; and
by none at all during Session J. Meanwhile, the term “Newton’s second law” was
entered by four, five, and seven subjects respectively in those sessions. In the
table of response frequencies for the prompt “energy” (not shown), the response
“work-energy theorem” rose from a frequency of one subject in Session B to
three in Session C to nine in Session J. Meanwhile, “work” was the most
frequently mentioned response in Sessions B and C, included by thirteen subjects
each time, but it was only entered by four subjects in Session J.

3.3.3.2. Identifying Subjects Responsible for Frequency Counts
When a response term has approximately the same frequency of appearance

in all sessions in which it was used, it is not obvious from the frequency data
alone whether the same subset of subjects entered that term each time. For
example, according to Table 3.10, ten subjects entered “acceleration” as a
response to the prompt “force” during Session B, eleven entered it during
Session C, and eleven during Session J. Was there a set of five subjects who did
not enter “acceleration” during all three sessions, or (at the other extreme) were
there six who did not mention it during Session B, five others who did not enter
it during Session C, and five still different ones who didn’t enter it during
Session J? The first case indicates that subjects are quite consistent across
sessions; the second that subjects are quite variable, and frequency counts
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describe only the likelihood that any given subject will enter a particular
response for a particular prompt.

B1_TPTE # C2_TPTE # J 2 _ T P T E #
gravitational 1 2 acceleration 1 1 gravitational 1 2
normal 1 2 fr ict ion 1 1 acceleration 1 1
fr ict ion 1 1 gravitational 1 0 normal 1 1
acceleration 1 0 mass 9 fr ict ion 1 0
newton 9 normal 9 mass 1 0
F = ma 8 vector 8 newton 8
vector 8 newton 7 net 7
mass 6 applied 5 Newton's second law 7
contact 5 net 5 spring 7
direction 4 Newton's second law 5 tension 6
Newton's second law 4 tension 5 weight 6
equal and opposite 3 direction 4 conservative 5
free body diagram 3 F = ma 4 applied 4
magnitude 3 weight 4 free body diagram 4
net 3 work 4 vector 4
Newton's laws 3 distance 3 action at a distance 2
weight 3 contact 2 contact 2
applied 2 dot product 2 external 2
distance 2 magnetic 2 internal 2
exerted 2 magnitude 2 Newton's laws 2
force 2 Newton's laws 2 nonconservative 2
push 2 strong 2 angular acceleration 1
tension 2 weak 2 coefficient of friction 1
9.8 m/s^2 1 action at a distance 1 direction 1
9.8 N/kg 1 add 1 displacement 1
action at a distance 1 air resistance 1 distance 1
air resistance 1 angle 1 electromagnetic 1
components 1 centripetal force 1 force 1
electromagnetic 1 components 1 G 1
F 1 displacement 1 kinetic friction 1
kg m/s^2 1 electromagnetic 1 magnitude 1
magnetic 1 F=W/d 1 moment of inertia 1
move 1 free body diagram 1 push 1
perpendicular 1 kg m/s^2 1 reaction 1
persuade 1 measurement 1 static friction 1
pull 1 natural force 1 strong 1
star wars 1 Newton's first law 1 system 1
torque 1 Newton's third law 1 unit 1
work 1 push 1 work 1
xy coordinate plane 1 spring 1
TOTAL: 136 TOTAL: 135 TOTAL: 142

Table 3.10: Frequencies of occurrence of standardized response terms to the
prompt term “force” (all subjects) for the three sessions in which it was presented
in the p151s99 study.
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Session/Task Subjects entering “acceleration” Total

B1_TPTE 2, 4, 6, 7, 8, 11, 12, 13, 151, 1 6 1 0

C2_TPTE 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 1 6 1 1

J2_TPTE 1, 3, 4, 5, 6, 8, 9, 12, 13, 14, 1 5 1 1

Table 3.11: Identification of subjects entering “acceleration” as a response to the
prompt term “force” in the TPTE tasks of the three sessions in which it was
presented.

Session/Task Subjects entering “trigonometry” Total

C2_TPTE 1, 7, 10, 13, 1 5 5

D2_TPTE 1, 2, 10, 13, 1 5 5

J2_TPTE 1, 3, 6, 10, 1 5 5

Table 3.12: Identification of subjects entering “trigonometry” as a response to the
prompt term “inclined plane” in the TPTE tasks of the three relevant sessions.

Table 3.11 indicates which subjects entered “acceleration” as a response to
“force” for the three sessions. Comparing rows, one finds that five subjects
entered “acceleration” in all three sessions, seven entered it in two of the
sessions, three entered it in one of the sessions, and only one did not enter it in
any. Table 3.12 shows the same information for the response “trigonometry” to
the prompt “inclined plane”, as an example of a response with consistent
frequency values lower than those of the previous example. The table indicates
that three subjects entered the response in all three sessions, one entered it in two
of the sessions, four entered it in one of the sessions, and eight did not enter it in
any.

Other cases analyzed (not presented here) follow the same general pattern,
revealing that the occurrences of response terms in frequency tables is largely but
not completely due to the same subjects in each session.

3.3.3.3. Suggestions for Further Study
For further study, a larger sample population is clearly crucial to provide

better statistics and to better separate noise from significant changes in the
frequencies of specific responses. A more sophisticated term-mapping scheme is
also desirable to reduce the impact of subjective term standardization decisions,
and to allow frequency counting at various levels of specificity (e.g. all energy
terms, all terms describing forms of energy, any mention of potential energy).
Different criteria for terminating term-entry for a prompt might reduce the level
of noise in the data; if the first few terms carry the most information, for example,
eliminating the later ones could help reveal important patterns. Making the
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termination criteria more stringent could be simulated in after-the-fact analysis;
relaxing or qualitatively changing them could not.

The information provided by this kind of response-frequency analysis seems
likely to be of more use to curriculum diagnosis, in which the efficacy of a
course’s treatment of domain material is studied, than to student diagnosis, in
which probing individual subjects’ comprehension is the goal. If changing
patterns of response choice can be linked to subjects’ changing understanding of
physics, it might also be useful in determining how TPTE data can be used to
reveal subject-specific information of cognitive and pedagogic value.

3.3.4. TPTE Similarity Values
The previous subsection considered all of the standardized response terms to

a specific TPTE session and prompt, and examined how many subjects entered
each. It was found that for all prompt terms and sessions considered, a few terms
were entered by many or most of the subjects, while the majority of terms were
idiosyncratic to one or two subjects. This raises the question of whether some
subjects are generally more “normal” than others; and if so, whether one might
be able to define a measure to represent how normal a subject is, in the sense of
how similar the contents of his/her response list is to that of the other subjects in
the study. To that end a quantity called similarity was defined which measured
the overlap of a subject’s response list with the lists of other subjects in the study.
The degree to which such similarity values were characteristic of individual
subjects or prompts, or varied systematically session to session throughout the
study, was then investigated.

3.3.4.1. Definition of “Similarity”
Given each subject’s standardized (cf. Section 3.3.1) response list for one

prompt of one task, define a raw similarity score for each list relative to other
subjects’ lists as follows: each term in the list contributes a number of points
equal to the number of other subjects who also included that term. Thus, if a
subject included two terms that were also included by five other subjects, one
term included by two other subjects, and three terms included by one other
subject, that subject’s response list would have a raw similarity score of
(2·5 + 1·2 + 3·1) = 15. This score has a theoretical maximum value equal to
M · (N – 1), where M is the maximum possible number of responses (ten in this
study) and N is the number of subjects.

The raw similarity score just defined suffers from two obvious defects. For
one thing, it depends on the number of subjects in the sample, making cross-
study comparisons difficult. For another, all subjects could supply exactly the
same response list and still get a less-than-maximum similarity score if the
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subjects entered fewer than the maximum allowed number of response terms,
which violates the desired notion of “similarity”.

The first defect is easily remedied by dividing each subject’s calculated score
by (N – 1). The second can be addressed by dividing each calculated score by the
average number of response terms provided by all subjects on that task and
prompt. We term the resulting measure the normalized  similarity (just similarity
for short) for the subject’s response list. The normalized similarity can be
considered to range between zero and one, although it is theoretically possible
that the value could be as large as 1 / (1 – o(1/N)) in unrealistic circumstances. If
all subjects entered exactly the same list, all would have a normalized similarity
score of one.

Normalized similarity values have been calculated for all 16 subjects on 48 of
the 52 session/prompt combinations. The four omitted cases were non-physics
prompt terms presented during Session A to familiarize subjects with the task.
The mean of all 768 values is 0.25, and the standard deviation is 0.16. The
maximum, median, and minimum are 0.71, 0.22, and 0 respectively.

Note that calculated values of similarity are strongly dependent upon the
term-standardization mapping scheme used. If similarity values are calculated
without any term-correction or mapping, then even trivial differences and
misspellings will cause two response terms to be interpreted as “different”, and
they won’t contribute towards similarity. At the other extreme, a strong mapping
scheme that maps large numbers of similar terms to one equivalent will result in
much higher similarity values. The mapping scheme used for the analysis in this
section was weak, implementing only spelling correction, adjustment of tense
and phrase ordering, and other “trivial” difference corrections, as described in
Subsection 3.3.1.

3.3.4.2. Are Similarities Characteristic of Individual Subjects?
The set of normalized similarities calculated for each subject for each of the

session/prompt combinations was plotted by subject in Figure 3.42. It appears
that some subjects tend to have consistently higher similarity values than others,
as measured by mean and standard error, but the range of similarities obtained
for any one subject is broader than the variation of the subject means, and
outliers are common.

To see whether mean similarity values correlate with subject exam
performance, Figure 3.43 plots each subject’s mean similarity across the 48
task/prompt combinations against the sum of their in-course exam scores. Error
bars indicate the standard error of the mean.
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Figure 3.42: TPTE similarities by subject. Dashes represent similarity values for
one response list; dots represent subjects’ mean similarity values, with error bars
indicating the associated standard error.
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Figure 3.43: Subjects’ mean TPTE response similarities vs. overall exam
performance. The data markers are numbers indicating which subject is
represented. Error bars indicate the associated standard errors. The best-fit line
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indicated.
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Figure 3.44: Subjects’ median TPTE response similarities vs. overall exam
performance. The data markers are numbers indicating which subject is
represented. The best-fit line used for calculating the coefficient of correlation
(Pearson’s r-value) is indicated.

The plot suggests a weak and noisy but statistically significant positive
correlation between mean similarity values and exam performance. A linear fit to
the data produces a Pearson’s r-value of 0.411, where 0.13 is the statistical
significance threshold for 16 data points. This suggests that normalized
similarities are to some extent characteristic of individual subjects, although to be
meaningful they must be averaged over many TPTE prompts.

Because outliers exist and the mean is sensitive to them, subjects’ median
TPTE response similarities were also plotted against overall exam performance,
as displayed in Figure 3.44. The plot shows that using the median rather than the
mean does not significantly change the distribution of points, and the r-value
rises only slightly to 0.461.

For these investigations of correlation, the noise level of the data might be
reduced by omitting similarity values for certain “outlier” prompts with atypical
response patterns. For example, the first time “impulse” was presented as a
prompt term, the subjects had not yet encountered the topic in the associated
course. Looking at the response terms subjects entered, it is clear few had any
idea of the physics meaning of “impulse”; many entered non-physics
associations such as “drive”, “fast”, “natural”, and “urge”, and most entered
many fewer terms than was typical of other prompts. Although this behavior is
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informative about subjects’ understanding of impulse, it obscures a study of the
more typical response patterns for other prompts.
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Figure 3.45: Similarity value vs. prompt, for task J2_TPTE of study p151s99. Blue
markers indicate values for individual subjects; red points indicate mean across
subjects, with error bars indicating standard error of the mean. Table 3.13 gives
the mapping between prompt number and prompt term.

3.3.4.3. Are Similarities Characteristic of Individual Prompts?
The previous subsubsection demonstrates that similarity values are

somewhat characteristic of individual subjects, in that some subjects tend to
manifest consistently lower similarity values than others. An analogous question
can be asked about prompt terms: do some prompt terms tend to evoke
systematically lower or higher similarity values from subjects than other prompt
terms? To investigate this, mean similarity values were calculated for each
prompt term of task J2_TPTE, averaged across subjects. To minimize the number
of variable factors in the comparison, only similarity values for prompts used in
Session J were compared. Figure 3.45 shows the similarity values plotted by
prompt, with mean and standard error indicated. Prompts are indicated by
number rather than by the prompt term itself, where prompt 1 was the first
presented in the task, prompt 2 was the second, etc. Table 3.13 indicates what the
prompt term for each prompt number was.
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prompt # prompt term prompt # prompt term
1 inclined plane 7 force

2 conservative 8 graph

3 rotation 9 spring

4 vector 1 0 free-fall

5 displacement 1 1 friction

6 energy 1 2 velocity

Table 3.13: Mapping between prompt number and prompt term for Figure 3.45.

It is clear from the plot that despite variations among subjects, some prompt
terms elicit consistently higher similarity values than others. The smallest
similarity values of the sixth and seventh prompts (“energy” and “force”), for
example, were larger than the largest ratings for the third and eighth prompts
(“rotation” and “graph”). Other prompts, notably the fourth and ninth (“vector”
and “spring”), elicited a particularly wide range of similarities from the subjects.
The TPTE task clearly probes something which is sensitive to different prompts
or kinds of prompts, and further study is warranted.

Since the prompts are numbered in the order they were presented to subjects
during the task, the plot shows no correlation between similarity values and term
order, suggesting that variations are due to the meanings the prompt terms hold
for the subjects.

3.3.4.4. Do similarities increase as the semester progresses?
Figure 3.46 shows the same set of similarity values as Figure 3.42, but plotted

vs. session rather than subject. A weak trend towards increasing similarity values
over the course of the study is apparent. Fitting a line to the plot produced a
correlation coefficient of r = 0.758, where 0.214 is the threshold for statistical
significance. The best-fit line had a slope of 0.0101 ± 0.0015, indicating a
statistically significant positive slope.

It is possible that similarity values increased because of the different sets of
prompt terms given in different sessions. To check this, mean similarity values
were compared between sessions for occasions when the same prompt term was
given in two different sessions. The TPTE tasks in sessions E and H used exactly
the same list of prompt terms, in the same order. Many of the terms were related
to momentum ideas, which were covered in class between the two sessions.
Therefore, if class coverage causes similarity values to increase, session H
similarity values should be generally larger than those for session E. Table 3.14
displays the difference between session H and E similarity values, by subject and
prompt term. Averages and standard errors by subject, by prompt term, and
overall are indicated.
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Figure 3.46: TPTE response similarities vs. session number. Dashes represent
similarities for individual response lists. Dots with error bars represent the mean
of all similarities for the session, with standard error. The best-fit line is
indicated.

In general, similarity values increased by an average of 0.027, 1.7 standard
errors above zero. This indicates a general trend towards larger similarity values,
with moderately strong statistical significance. Although significant, the change
is small: 0.027 is 10% the overall two-session mean similarity value of 0.275.

For the mean differences by subject (averaged across prompts), five are
greater than one standard error from zero, and all of those are positive. Only one
of those was greater than two standard errors from zero. Of the remaining eleven
subjects, four had negative means, indicating overall decreasing similarity
values. Overall, this suggests the possibility that some subjects are more inclined
than others to demonstrate increased similarity values, but the evidence is weak.
The largest changes are of order 0.1, which is nontrivial compared to the mean
similarity value of 0.275.

For the mean differences by prompt term (averaged across subjects), the
statistics are clearer: similarity differences were more than seven standard errors
from zero for one prompt (“impulse”), and approximately three to four standard
errors from zero for three more prompts (“collision”, “power”, and “range”). The
magnitudes of those changes are 0.244, 0.100, –0.074, and –0.054, nontrivial
compared to the mean similarity value. Two of the apparently significant
changes are negative, indicating that subjects were more likely to have lower
similarity values for those prompt terms on the later session.
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1 0.038 0.308 0.315 0.030 -0.183 0.006 -0.101 0.059 0.072 0.82

2 0.027 0.218 0.388 0.426 -0.231 -0.059 0.029 0.114 0.091 1.25

3 -0.020 0.152 0.168 -0.248 0.102 0.083 0.014 0.036 0.054 0.67

4 -0.038 0.117 0.265 0.173 0.001 -0.050 -0.101 0.053 0.051 1.03

5 0.016 0.197 0.009 -0.311 -0.054 -0.087 -0.014 -0.035 0.057 -0.61

6 0.022 -0.065 0.257 -0.200 0.074 -0.099 -0.115 -0.018 0.057 -0.32

7 0.013 0.130 0.234 0.081 0.061 -0.013 0.000 0.072 0.033 2.19

8 0.057 0.171 0.150 -0.204 -0.131 -0.095 -0.058 -0.016 0.054 -0.29

9 -0.096 0.113 0.351 -0.051 0.009 -0.154 -0.072 0.014 0.065 0.22

1 0 0.025 0.135 0.022 -0.006 0.042 -0.135 -0.043 0.006 0.031 0.18

1 1 -0.010 0.024 0.314 0.075 0.357 -0.148 0.014 0.090 0.069 1.30

1 2 -0.130 0.038 0.051 -0.046 0.199 0.051 -0.115 0.007 0.043 0.16

1 3 0.157 0.074 0.313 0.319 -0.094 0.094 -0.058 0.115 0.061 1.88

1 4 -0.084 0.197 0.469 -0.167 -0.221 -0.288 -0.173 -0.038 0.103 -0.37

1 5 -0.005 -0.192 0.332 0.044 0.086 -0.162 -0.101 0.000 0.068 0.00

1 6 0.092 -0.014 0.263 0.051 -0.442 -0.137 0.029 -0.023 0.083 -0.27

mean 0.004 0.100 0.244 -0.002 -0.027 -0.074 -0.054 0.027

s t Er r 0.018 0.030 0.033 0.050 0.048 0.025 0.015 0.016

rat io 0.22 3.29 7.37 -0.04 -0.56 -2.95 -3.53 1.73

Prompt Term

Table 3.14: Change in TPTE response similarities from Session E to Session H.
“ratio” indicates the ratio of a mean to its corresponding standard error.

The case for the prompt “impulse” is particularly clear, and is easy to
interpret. The mean similarity value across subjects for that term was 0.089 for
session E and 0.333 for Session H. The concept of “impulse” was introduced to
students in the associated course during the time between those two sessions.
Looking at the specific response terms subjects entered, it is obvious that most
subjects had no understanding of “impulse” in the physics sense during Session
E, and resorted to random and non-physics responses like “urge” and “sudden”;
by Session H, however, they could provide a reasonable set of responses. At least
in this extreme case, similarity values do seem to be sensitive to subjects’ general
familiarity with a prompt term.

In summary, there is no evidence for a significant overall trend to increasing
similarity values, but there is evidence that similarity values for some specific
terms either increase or decrease significantly, and there is weak support for the
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hypothesis that some subjects show a tendency towards increased similarity
values.

3.3.5. TPTE Response List Scoring
The previous section developed and investigated a measure of how similar a

subject’s TPTE response list for a prompt was to the lists of other subjects in the
study. This section develops a procedure for scoring a subject’s response list
based on the quality of response terms entered, as judged by domain experts.
The measure developed is thus much more like a conventional “grade” for an
assignment.

A response term is deemed to be “high quality” relative to the prompt term
if it indicates a concept related in a meaningful way to the concept described by
the prompt term, and “low quality” if it is irrelevant, trivial, or otherwise not
something an expert would consider significantly related to the prompt.

Scoring of lists was carried out for only one prompt term, “force”, which was
used as a TPTE prompt during p151s99 study sessions B, C, and J.

3.3.5.1. Expert Ratings and Student Scores
A panel of five physics experts — four physics professors and one advanced

graduate student — was formed. Four of the five had detailed knowledge of the
ongoing ConMap research project, so the panel cannot be considered
representative of any general population of physics experts. To familiarize the
expert panelists with the TPTE task and to acquire some data for later
comparisons, the experts were all assigned a 16-prompt TPTE session which
included the prompt “force”.

A master list was constructed which consisted of every response term given
by every subject in the p151s99 study to the TPTE prompt “force” in each of the
three sessions in which it was presented, and also every response term given by
each of the five expert panelists to the prompt “force”. Basic term mapping (cf.
Subsection 3.3.1) was carried out on this list, resulting in a set of 80 standardized
terms. This set was alphabetized and presented to each of the expert panelists.
The experts were instructed to rate the quality of each term as a TPTE response
to the prompt “force”, and assign to it a “2”, “1”, or “0”, according to the
following scale:

2: Good/valuable/important. “This student knows his/her stuff.”

1: Has some merit. “Not an unreasonable response.”

0: Irrelevant, worthless. “Reveals no knowledge of a nontrivial
relationship.”
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The five experts’ ratings were averaged for each response term, resulting in a
quality value between 0.0 and 2.0 for that term relative to the prompt term.

The score for a response list was defined to be the sum of the quality values
for each term in that list, which can range from zero to twenty. Such a score was
calculated for each of the p151s99 subjects’ response lists to the prompt “force” in
each of the three sessions. The resulting set of 48 scores (three each for sixteen
subjects) ranged from 4.2 to 15.2, with a mean of 11.8 and a standard deviation of
2.9.

For each subject, a mean score for the “force” prompt was calculated by
averaging their scores for each of the three sessions’ response lists. The resulting
set of 16 mean scores ranged from 8.0 to 14.5, with a mean of 11.8 and a standard
deviation of 2.0.

3.3.5.2. Score Correlation with Exam Performance
To investigate whether such TPTE response list scores correlate with subject

exam scores (and thus, presumably, with “expertise”), scatterplots of “force”
response list score vs. exam performance were constructed for each of the three
sessions and for the three-session mean scores. These are displayed in Figure
3.47, Figure 3.48, Figure 3.49, and Figure 3.50. Pearson’s “r-value” coefficient of
correlation is indicated in each plot; the threshold for statistical significance for
16 data points is 0.13.

Although all four plots have a “statistically significant” r-value, only one of
the three single-session plots, Figure 3.48 shows a convincingly strong
correlation. The plot of the three-session subject averages displays a noticeably
stronger correlation. Overall, there is some evidence for the correlation of list
score with exam performance, at least for the prompt term “force”, although the
correlation appears quite noisy unless scores are averaged across multiple
presentations (sessions) of the prompt.

3.3.5.3. Comparison with Expert Scores
Using the same scoring mechanism and term quality ratings, the five expert

panelists’ response lists received scores of 14.2, 13.4, 11.6, 9.4, and 8.4, for a mean
of 11.4 and a standard deviation of 2.5. It is interesting to note that the mean of
the experts’ scores was slightly lower than that of the students in the p151s99
study, in apparent contradiction to the hypothesis that higher scores indicate
greater domain expertise.

This result does not necessarily rule out the hypothesis, however, as other
factors may be responsible. The conditions under which the experts performed
the TPTE task were quite different from conditions for the p151s99 study.
Perhaps most significantly, the experts’ data came from their first encounter with
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Figure 3.47: P151s99 B1_TPTE scores for “force” vs. course exam performance.
The data point markers are numbers indicating the subject represented by the
point. The best-fit line is shown.
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Figure 3.48: Same as Figure 3.47, but for task C2_TPTE.

the TPTE task, and for some it was their first experience with any ConMap task;
whereas for the p151s99 subjects, the sessions relevant to this analysis were the
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Figure 3.49: Same as Figure 3.47, but for task J2_TPTE.
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Figure 3.50: Same as Figure 3.47, but for the average of the three session scores
for each subject.

second, third, and tenth of the study, so that all had prior TPTE experience. In
addition, most of the experts had participated in extensive discussions about the
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ConMap study, and likely brought to the task a different set of preconceptions
than did the student subjects.

3.3.5.4. Future Research
A repeat of the above analysis for prompt terms other than “force” is

warranted, to see whether the patterns observed are unique to that prompt or
common to all.

It is the intention of the TPTE task design that a subject’s responses to a
prompt term should reveal concepts in the subject’s conceptual knowledge store
that are linked to the concept described by the prompt term. Therefore, response
list scores might correlate more strongly with exam performance if only
questions depending on an understanding of that concept are considered.
Questions from the course exam which depend on a conceptual understanding of
“force” could be identified, and a partial exam score for those questions could be
calculated and compared to TPTE response scores for the “force” prompt term.
Unfortunately, the course exams used during the p151s99 study do not lend
themselves well to this kind of analysis, as few target such a conceptual
understanding. Future studies should include a “problem-solving” task in which
carefully selected problems are presented to subjects to analyze and solve, and a
set of problems targeting understanding and conceptual relationships involving
“force” and other significant prompt terms should be included.

An improved set of term “quality” ratings should be generated. The current
set was produced by a small set of experts, and subsequent discussions revealed
that the experts had different strategies and criteria for assigning values to terms,
resulting in significant disagreement in ratings. A better-defined procedure for
determining term values, applied to a larger sample of domain experts, should
reduce the noise level in term scoring. When such experts disagree in their
ratings, discussions between them might help to refine and make explicit the
criteria to use for rating terms.

Further research comparing experts’ and students’ performance on TPTE
tasks is warranted, to determine what signatures of domain expertise the task is
sensitive to. Results of such research might suggest improvements in the scoring
criteria to make TPTE score more sensitive to domain knowledge, or perhaps
even improvements in the TPTE task design.

3.3.6. Comparison of TPTE With HDCM Data
The use of hand-drawn concept maps (HDCM) for teaching and assessment

has received much attention in the educational research literature, as discussed
in Subsubsection 1.2.3. Consequently, it would be valuable to know the extent to
which the information elicited by ConMap tasks is similar to that elicited by a
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HDCM. The TPTE task seems particularly likely to produce information similar
to a HDCM, given that it, like the HDCM, presents subjects with a specific term
or idea and asks them to specify related terms/ideas. (Of the vast range of
variants of the HDCM discussed in the literature, the TPTE appears more like
those in which subjects must generate their own terms to add to the map, and
less like those in which the terms are provided and only the relationships, or
only relationship descriptors, need be added.)

Therefore, one intent of the ConMap study was to compare the terms
subjects entered as TPTE responses to the terms they chose as elements in a
HDCM of the same prompt (starting) term. Subjects were given a HDCM task
during four different sessions of the p151s99 study. The sessions and task
numbers and the prompt terms for each HDCM task are listed in Table 3.15.

Session/Task Prompt Term
B2_HDCM Force
G2_HDCM Energy
H2_HDCM Momentum
J4_HDCM force

Table 3.15: Prompt terms used for HDCM tasks during p151s99 study.

For B2_HDCM, H2_HDCM, and J4_HDCM, a TPTE task had been given
earlier during the same session, and one of the prompt terms in the TPTE was the
same as the HDCM prompt. No TPTE was given during Session G, so subjects’
maps for G2_HDCM were compared to their response lists for the same prompt
term from J2_TPTE.

3.3.6.1. Quantification of data
For each subject’s map on each HDCM task, every node was assigned a

“level” depending on how removed it was from the prompt term’s node. Nodes
directly linked to the prompt term node were defined to be level one; nodes
directly linked to level one nodes but not to the prompt term node were defined
to be level two; and so on.

Some subjects included one or more terms more than once on a map,
resulting in duplicate nodes with different sets of links. Such duplicate nodes
were counted as one node only, with level equal to the lowest of the level
numbers that would be given to any of the instances. That is, if a term occurred
in a node at level one and elsewhere on the map in another node at level three, it
was counted as one level one node only; and all nodes linked to either instance
were assigned level two (unless the were also linked directly to the prompt term
node, in which case they would also be level one).
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In cases where subjects drew invalid map structures, such as Y-shaped links
that connected three nodes together, a valid structure was substituted which
reflected what the subject seemed to be attempting to represent, and analysis
proceeded with that substitution.

As indicated above, each map was associated with a TPTE response list. Each
term in the TPTE response list was matched with an HDCM node containing an
equivalent term, if one existed, and the level of that node was noted. Duplicate
terms in the TPTE response list were ignored.

Because subjects were free to choose their own phrasing and spelling, inexact
matches were common. We considered a TPTE response term to match a map
node term if their meanings were equivalent, whether or not the terms were
identical. For example, “gravity” and “gravitation” were considered matches, as
were “FN” and “normal”. Contextual clues from adjacent nodes were sometimes
used to aid in identifying the intended meaning of map terms.

On occasion, a TPTE response term did not appear by itself as a map node,
but did appear as part of a compound term in a map node: for example,
“acceleration” might appear in the TPTE response list and not on the HDCM
map, but “mass × acceleration” might appear on the map. In such cases, the term
was counted as appearing on the map, with the level of the compound term
containing it.

comparison mean
standard
deviation

B2_HDCM vs. B1_TPTE 0.54 0.22

G2_HDCM vs. J2_TPTE 0.61 0.19

H2_HDCM vs. H1_TPTE 0.64 0.18

J4_HDCM vs. J2_TPTE 0.47 0.18

All 4 combined 0.57 0.20

Table 3.16: Mean and standard deviation across study subjects of the fraction of
level 1 HDCM terms appearing in the corresponding TPTE response list, for each
of the four HDCM/TPTE sets.

3.3.6.2. First-Level Map Terms in TPTE
For each subject’s map on each HDCM task, the fraction of level 1 map terms

that appeared in the corresponding TPTE response list was calculated. Results
are displayed in Table 3.16.

On average, slightly more than half of the terms from each subject’s first-
level map nodes also appear in the subject’s corresponding TPTE response list. A
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few list-to-map pairings showed an atypically low fraction of common terms;
when such pairings were inspected in detail, it was often found that the subject
had “categorized” several of the terms from the TPTE response list and used that
category as a first-level node on the HDCM, causing the terms themselves to
appear at the second level. For example, a subject might have listed several kinds
of forces as TPTE responses to the prompt “force”, but might have categorized
kinds of forces into “contact” and “at a distance” on the HDCM, with the two
category names directly linked to the central “force” node and the specific forces
connected at level two.

comparison mean
standard
deviation

B2_HDCM vs. B1_TPTE 0.19 0.20

G2_HDCM vs. J2_TPTE 0.13 0.13

H2_HDCM vs. H1_TPTE 0.13 0.14

J4_HDCM vs. J2_TPTE 0.28 0.12

All 4 combined 0.18 0.16

Table 3.17: Mean and standard deviation across study subjects of the fraction
TPTE response terms not  appearing on the corresponding HDCM, for each of
the four HDCM/TPTE sets.

3.3.6.3. Fraction of TPTE Terms Not on Map
For each subject map and associated TPTE response list, the fraction of TPTE

response terms not appearing anywhere on the map was calculated. Table 3.17
displays the results. For all the subjects and tasks, between 65% and 100% of a
subject’s TPTE response terms are likely to appear on his/her corresponding
HDCM.

3.3.6.4. Discussion
Despite the fact that the HDCM is a considered, reflective task and the TPTE

is a spontaneous, impulsive one, TPTE data sets seem to provide a subset of the
information provided by a HDCM. Specifically, a subject’s TPTE response list
typically contains slightly more than half of the first-level terms appearing in the
corresponding HDCM, and few of the TPTE responses are entirely absent from
the HDCM. The TPTE thus seems useful for probing the “core structure” of the
subject’s CKS, while the HDCM allows gathering of more widespread structural
information.
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Speculating, one might consider whether the fact that some of a subject’s
level one HDCM terms appear in the TPTE response list and some do not
indicates anything fundamental about the subject’s knowledge, rather than
indicating that the TPTE task is noisy. Perhaps the HDCM level one terms which
also appear in the TPTE are those to which the subject has automated, instant
access, while those which don’t appear are only accessible to the subject upon
conscious reflection.

In further study, one might compare branchings from subsidiary nodes of a
HDCM to response lists when the subsidiary node term is used as a TPTE
prompt. It might be possible to predict significant portions of a subject’s HDCM
from TPTE response data for a set of prompt terms; if so, the TPTE task might
provide a basis for an easier-to-administer, easier-to-evaluate equivalent to the
much-studied HDCM assessment.

3.3.7. Summary of TPTE Findings
Section 3.1 began by introducing a mechanism for standardizing terms to

deal with the idiosyncratic variation in subjects’ spelling and word choice. It then
presented a statistical description of TPTE response data for the p151s99 study. It
was found that some subjects tend to enter more response terms (“response
count”) than others, on average, but that the variations in each subject’s response
counts from prompt to prompt is larger than the variation between subjects’
mean response counts. Subjects’ mean response counts were found to correlate
only very crudely with their overall course exam performance. There does
appear to be a systematic variation in response count vs. session during the
study, when averaged over subjects.

For each prompt term of each session, each response term’s “frequency” —
the number of subjects entering it or a term that mapped to it — was calculated.
It was found that for each prompt, approximately one-quarter of the response
terms were common to several subjects, and the majority were unique to one or
perhaps two. Typically, the most popular four responses accounted for
approximately one third of all responses from all subjects. Some prompt terms
were found to elicit more agreement among subjects (higher frequencies) than
others. For prompt terms that were given in multiple sessions of the study, it was
found that many of the more popular response terms had close to the same
frequency in all sessions, although there were a few notable exceptions. For such
terms with approximately constant frequencies in all sessions, the subjects
responsible were identified, and it was found that the set of subjects was largely
but not completely the same for the different sessions.

In order to compare a subject to the norm defined by other subjects in the
study, a quantitative measure called “similarity” was defined that quantifies a
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response list’s overlap with a pool of other response lists. It was found that over
all prompts and sessions, some subjects tend to have higher mean similarity
values than others, but that the range of similarities exhibited by an individual
subject is larger than the range of differences between subjects’ mean similarity
values. Subjects’ mean similarity values, over all sessions and prompts, have a
statistically significant but weak correlation with course exam performance.
Similarity values seem to be more strongly characteristic of the prompting term,
such that the lowest of all subjects’ similarity values for some prompts were
higher than the largest of all for some other prompts. Average similarity values
for prompts did not appear to depend on the order of the prompts during a
session. Over the course of the study, however, there does appear to be some
increase in average similarity values by session. Detailed analysis shows this to
be attributable to a few specific prompt terms and perhaps to a subset of the
subjects.

As a measure of the overall “quality” of a subject’s response term list, a
procedure was developed for assigning to each list a score based on a panel of
experts’ judgments of how relevant and insightful various response terms were
to the given prompt. Only responses for the prompt term “force” were analyzed,
for the three sessions in which it was presented. It was found that for any one
session, subjects’ list scores correlate weakly with course exam performance;
when averaged over all three sessions, the correlation is significantly stronger.
There is thus reason to believe that TPTE measures could be developed which
provide some of the same information that traditional exams do.

TPTE response lists were compared to subjects’ hand-drawn concept map
(HDCM) structures for the same prompt term, and it was found that a subject’s
TPTE responses typically had significant overlap with node terms in his/her
map, especially the node terms directly connected to the starting node. Few of
subjects’ TPTE responses didn’t appear in their maps at all. Therefore, the TPTE
task would seem to probe similar aspects of subjects’ knowledge structure as the
HDCM task.

Overall, the TPTE task shows promise as a probe of subjects’ conceptual
knowledge structure. Information obtained appears similar to that gained
through HDCM methods, and also has some correlation with exam scores.
Further, more intensive study is recommended.

Two shortcomings of the present analysis should be rectified. One is the poor
statistics available due to the small size of the sample; further studies should
aspire to a significantly larger population of subjects. The other is the
arbitrariness, subjectivity, and probable inconsistency introduced when
attempting to deal with the vagaries of subjects’ term choices. Spelling and
typographical mistakes and arbitrary choices of word ordering and pluralization
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are simple to correct; deciding which of an almost continuous range of possible
terms should or should not be considered “the same” is not. Although all
ConMap tasks encounter this difficulty, it is more significant for the kinds of
analysis done so far with TPTE data. It is not at present clear how the difficulty
should best be approached, but careful thought is needed prior to the design of
any follow-up study.

Also, some possible confounding problems need to be addressed. If a subject
is presented with a prompt term that has already been presented in a previous
session, his/her responses might be impacted (inter-session memory); this
impact should be assessed and a methodology for its minimization developed.
Similarly, for prompt terms other than the first presented during one TPTE task,
a subject’s memory of the immediately previous prompt and response terms
might impact their responses (intra-session memory); this impact should also be
considered.

3.4. Problem-Prompted Term Entry (PPTE) Data Analysis
The Problem-Prompted Term Entry (PPTE) task is identical to the Term-

Prompted Term Entry (TPTE) task, except for the fact that subjects are presented
with prompt problems (or occasionally questionless problem situations or
isolated diagrams) instead of prompt terms. Subjects were instructed to read a
prompt problem on paper, and then begin the term-entry portion of the task. The
response term and timing information collected was identical to TPTE data;
consequently, much of the analysis of PPTE data follows that for the TPTE.

The mechanism of mapping subjects’ idiosyncratic terms to standardized
forms that was developed for TPTE analysis was applied here as well. For each
prompt problem whose response lists were analyzed, a mapping table was
constructed by the author. As with the TPTE, if a prompt problem was presented
during multiple sessions, all subjects’ response terms for that prompt from all
sessions were gathered into one list, for which standardized forms and mappings
were determined.

 Section 3.3 presents the results of analysis on PPTE data gathered during the
p151s99 study, the only study employing the PPTE task and including a large
enough subject population for meaningful discussion. Subsection 3.4.1 analyzes
the statistics of response counts (the number of term responses entered) by
subjects as a function of subject and session. Subsection 3.4.2 examines term
frequencies (the number of subjects entering a term for one prompt of one
session’s PPTE task). Subsection 3.4.3 departs from pure phenomenology and
investigates whether the evolution of subjects’ physics knowledge, presumed to
occur as a result of participation in a physics course, is manifest in response lists
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as a higher occurrence of response terms related to the “right” or “expert-like”
solution to the prompting problems. Subsection 3.4.4 seeks correlations between
subjects’ choice of response terms and their success or failure on the prompting
problem when encountering it on a course exam. Finally, Subsection 3.4.5
summarizes the section’s findings.

3.4.1. Response Counts
In the p151s99 study, 16 subjects were presented with 40 PPTE prompts

distributed among seven of the ten study sessions. For the 40 prompts, 30 unique
prompt problems were employed: 23 appeared once, four appeared twice, and
three appeared three times. Of the 23 that appeared once, five were diagrams
with no problem description or question associated; these constituted the only
five prompts for the Session I task, I1_PPTE. Of the ones that were repeated twice
or three times, given numerical values were sometimes altered between
presentations. For two of the problems that appeared twice, the question was
removed from the problem for one of the appearances, resulting in a “problem
situation”. Seven of the problems appearing once were taken verbatim from
course exams, and given shortly after subjects took the exam containing them.

With 16 subjects and 40 response lists per subject, the total number of TPTE
response lists collected throughout the study was 639. (Due to a procedural error
during the study, one subject failed to respond to one of the prompts.) The
maximum number of responses allowed per prompt term was ten. The minimum
was generally three; for the three prompt problems of Session A, however, the
minimum was one. For all subjects, PPTE tasks, and prompts in the study, the
mean number of responses per list was 6.71, with a standard deviation of 2.39;
the median was six. Figure 3.51 shows a normalized histogram of the response
counts.

Comparing Figure 3.51 to the equivalent histogram for the TPTE task
(Figure 3.38 on page 85), it is evident that the shape of the distribution is similar
for the two types of task, but that a slightly larger fraction of response lists have a
full ten terms for the TPTE task than for the PPTE task (27% vs. 23%). The shape
of the remainder of the distribution is also somewhat different for the two: the
PPTE distribution is peaked near the center (5 responses), while the TPTE
distribution is skewed and peaks to the left (4 responses).

Figure 3.53 displays each subject’s mean number of responses per prompt,
averaged over all prompts in all PPTE tasks in the study. Error bars indicate the
associated standard deviation (not standard error). The plot looks very similar to
the equivalent plot for the TPTE task (Figure 3.39 on page 85), even down to the
approximate location of each data point. Figure 3.55 shows a plot of each
subject’s mean PPTE response count against his/her mean TPTE response count;
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Figure 3.51: Histogram of response counts for all PPTE tasks and prompts in the
p151s99 study. Total number of counts was 639.
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Figure 3.53: Mean PPTE response counts by subject (p151s99 study). Error bars
indicate the standard deviation of the set of term counts.

the coefficient of correlation is r = 0.859, where 0.13 is the statistical significance
threshold. It is clear that subjects’ response counts on PPTE and TPTE tasks are
strongly correlated. The correlation of subjects' PPTE response counts with exam
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Figure 3.55: Subjects’ mean PPTE response count against mean TPTE response
count, with standard errors in the means (not standard deviations) indicated, for
all prompts and sessions of the p151s99 study.

scores should therefore be approximately the same as was found for the TPTE
task, and will not be presented here.

Figure 3.56 shows PPTE response term counts by session of the study,
averaged over prompts and subjects. The plot is essentially level, although the
Session A mean is slightly larger than the others, and the Session J mean is
slightly smaller. Because both of these sessions were atypical in the study — the
first was largely a “warm-up” session to get subjects familiar with the tasks, and
the last was unusually long, contained many tasks, and included domain topics
from much of the course — the plot suggests that there was no overall trend
towards decreasing response count over study. This differs from the
corresponding plot for the TPTE task (Figure 3.41 on page 86), which showed a
smoothly decreasing mean response count over the first five sessions, and then
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an increase for the eighth and tenth sessions. (No TPTE was given during the
sixth, seventh, and ninth sessions.)

Overall, conclusions from the analysis of PPTE response counts are similar to
those from analysis of TPTE response counts: evidence suggests that response
counts might be characteristic of individual subjects, and therefore might serve
as a useful probe of subject knowledge. Further study is warranted, with
attention paid to the effect of different task termination criteria.
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Figure 3.56: Mean number of response terms by session, averaged across subjects
and prompts. Error bars indicate standard deviations. (Session 1 = “Session A”,
etc.)

3.4.2. Response Term Frequencies
For PPTE data, as for TPTE data, response term frequencies — the number of

subjects entering each standardized response term — can be calculated. Due to
the great variation among the prompt problems, which included isolated
diagrams and questionless problem situations as well as problems from the
course exams and problems designed specifically for the study, it is not expected
that patterns of frequencies will be as uniform across prompts for the PPTE as
they were for the TPTE.

Because of the time necessary to create term-standardization mapping tables
for the analysis, response term frequencies were only calculated for two prompt
problems. These were relatively standard problems without associated pictures,
not drawn from the course exams. Both of the problems were presented as
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prompts during three different sessions’ PPTE tasks (C1_PPTE, D1_PPTE, and
J3_PPTE), in identical form each time except for variations in some of the given
numerical values.

The overall pattern of the response frequencies resembled the pattern for
TPTE frequencies: a small number of responses were entered by half or more of
the subjects, and roughly half of the responses were idiosyncratic to one subject.
The three or four most popular responses accounted for approximately one-
quarter of all response counts each time a prompt problem was presented. The
two problems analyzed showed a different signature in that for one (problem
“C1”, shown in Section 3.4.3.2), the most popular terms had frequencies of 14, 11,
and 10 for Sessions C, D, and J respectively, while for the other (problem “C4”,
also shown in Section 3.4.3.2), the most popular terms had frequencies of 8, 7,
and 8. By this measure, problem C1 produced more uniformity among subjects
than problem C4.

General comments made in Subsection 3.3.3 about the utility of TPTE
response frequencies and suggestions for future study also apply here.

3.4.3. PPTE Response Evolution
One of the primary aims of the ConMap project is to develop tasks capable of

detecting the evolution of a subject’s conceptual knowledge store as he or she
learns physics. In an attempt to determine whether the PPTE task is sensitive to
such evolution, certain prompt problems were repeated during multiple
sessions, and subjects’ response terms to those prompts examined for indications
of increased domain expertise. Evidence was found that after covering relevant
material in class, subjects are more likely to include among their responses terms
corresponding to the key principle required for optimal solution of the prompt
problem.

A comment on notation: “problem D6” means “the sixth prompt problem
given during the Session D PPTE task”. A full notation would be “D1_PPTE,
Problem 6”, where “D” signifies the session, “1” signifies the task during the
session, and “PPTE” signifies the type of task. However, since no session had
more than one PPTE task, “problem D6” is sufficiently specific within the context
of this section. All subjects were given prompt problems in the same order, so
problem D6 was identical for all subjects.

Two PPTE prompt problems were given during three different sessions of
the p151s99 study, and four others were given during two different sessions. The
two problems given three times each (C1=D6=J3 and C4=D2=J5) were given
during Sessions C, D, and J. Domain material relevant to the problems was
covered in the concurrent physics course between Sessions C and D, and an
exam on the material was given during the same week as Session D, so it is
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reasonable to assume that subjects spent time studying the material during the
week between Sessions C and D. The data from these two prompt problems were
therefore examined as a test of the hypothesis that the PPTE task can detect
conceptual change resulting from lecture coverage and exam studying.

Two of the problems given two times each (I2=J4 and I5=J1) were separated
by only one week, and both sessions were significantly later in the semester than
the relevant material was covered. These two cases served as a control test by
providing a measure of how consistent subjects’ PPTE responses were for two
consecutive sessions, in the absence of directly relevant course coverage.

The other two problems which were used during two sessions (C2=J2 and
D1=J7) did not lend themselves well to this analysis. The crux of each problem
lay not in choosing the right conceptual approach, but rather in applying it
correctly. Term responses therefore seemed inadequate for judging whether
subjects’ expertise relevant to the problems had increased, and these problems
were omitted from the analysis.

3.4.3.1. Control: Consecutive Weeks, No Relevant Coverage
PPTE prompts I2 and J4 used the same prompt problem (taken from the

third course exam, given during the week before Session H). The same is true of
prompts I5 and J4. For each occurrence of each prompt, subjects who responded
with terms indicating the key concept(s) needed to solve the problem were
identified, and a comparison was done to see how consistent subjects were in this
regard across the two sessions.

I2 and J4
Problems I2 and J4 both read:

A cannon mounted on top of a wagon fires a
cannonball horizontally at a muzzle speed of 50
m/s, as shown. The mass of the wagon and
cannon is 100 kg, and the mass of the cannonball
is 5 kg. The system is initially at rest prior to the
cannonball being fired. What is the final speed of
the wagon and cannon immediately after the
cannonball is fired?

50 m/ s

For I2 and again for J4, each subject who included “momentum” or
“conservation of momentum” among his or her responses was binned as
“positive”. Table 3.18 shows the resulting counts as a two-way table (Moore and
McCabe 1989).
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J4: neg J4: pos J4: any

I2: neg 2 1 3

I2: pos 0 13 13

I2: any 2 14 6

Table 3.18: Two-way table of subjects who included “momentum” or
“conservation of momentum” among PPTE responses to I2 and J4 prompts.

It is immediately clear that there was great consistency between the two
sessions: only one subject in sixteen changed categories. A chi-squared test
against the null hypothesis that subjects’ binnings for the two sessions are
uncorrelated (preserving the same ratio of positive to negative as the data yields
for each session) confirms this: the P-value for the data against such a hypothesis
is 0.0016, which means the null hypothesis is extremely unlikely.

I5 and J1
Problems I5 and J1 both read:

A pendulum is made by attaching a mass of 0.5 kg
to a string 1 m long. The pendulum is released from
rest with the string horizontal as shown. When the
pendulum mass gets to the bottom of the swing, it
collides, and sticks to, another mass of 1.5 kg. How
high above the ground do the two masses rise after
the collision?

L=1m0.5 kg

1.5 kg

For I5 and again for J1, a subject was binned as positive if he or she included
“momentum”, and also included “conservation of energy”, “conservation of
mechanical energy”, or both “kinetic” and “potential” energy. Table 3.19 shows
the resulting counts as a two-way table.

As with the comparison of I2 and J4, there is great consistency between the
two sessions; once again only one subject in sixteen changed categories. (That
subject was a marginal “negative” for I5, and an argument could be made for
placing him or her in the positive bin, which would mean no subjects changed
bins at all.) A chi-squared test against the null hypothesis that subjects’ binnings
for the two sessions are uncorrelated (preserving the same ratio of positive to
negative as the data yields for each session) confirms this: the P-value for the
data against such a hypothesis is 0.00087.
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J1: neg J1: pos J1: any

I5: neg 3 1 4

I5: pos 0 12 12

I5: any 3 13 16

Table 3.19: Two-way table of subjects who included “momentum”, and also
included “conservation of energy”, “conservation of mechanical energy”, or both
“kinetic” and “potential” among PPTE responses to I5 and J1 prompts.

3.4.3.2. Lecture Coverage and Exam Studying
The two problems given during Sessions C, D, and J are optimally solved

with the work-energy theorem, but can be solved (with much more labor)
through other paths: kinematics for one problem; kinematics, vector resolution,
and the definition of work for the other. When subjects were presented with the
problems during Session C, they had been introduced to work and energy
concepts,  but the lecture instructor had not completed his treatment of the work-
energy theorem. During Session D, one week later, coverage of energy topics was
essentially complete, and subjects were taking an exam on the material. Most of
the subjects were taking the exam later on the same day as their ConMap session;
a few took the session two days after the exam. The Session J presentation
occurred significantly later, at the end of the semester, near the last day of
classes.

It was hypothesized that additional lecture and homework coverage focused
on the material and preparation for the exam would impact the way subjects
responded to the prompt problems. Specifically, it was anticipated that more
students would respond with terms indicating an inclination to consider the
work-energy theorem for solving the problems during Session D than during
Session C. For the Session J responses, two outcomes seemed plausible, assuming
that the hypothesis about Sessions C and D turned out to be correct: if the
increase from C to D was due to short-term immersion in work and energy
course material (i.e. subjects had those terms on their minds), then the fraction of
positively-binned subjects should decrease from D to J; or, if the increase was
due to a real change in subject’s conceptual reaction to the problems, then the
rate for J should be comparable to the rate for D and significantly higher than the
rate for C.
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C1, D6, and J3
Problem C1 read:

An object is launched directly upward with an initial speed of 18 m/s. What is
the object’s speed after rising 8 meters?

Problem D6 was identical to C1 except that “18 m/s” was changed to “12
m/s” and “8 meters” was changed to “5 meters”. Problem J3 was identical to
problem D6.

For each subject’s Session C list of response terms to the prompt problem, the
subject was binned as “positive” if he or she included “work” or “energy” as a
response term or part of a response term. Subjects who mentioned neither were
binned as “negative”. Each subject was binned according to the same criterion
for Sessions D and J, resulting in three binnings per subject. For each of the three
sessions, the 16 subjects’ binnings were assembled, and the fraction of subjects
binned as positive for that session and prompt was calculated. The results are
displayed in Table 3.20.

Session & Problem: C1 D6 J3

Fraction “positive”: 1/16 7/16 6/16

Table 3.20: Fraction of subjects including “work” or “energy” among their PPTE
responses for prompts C1, D6, and J3 (same problem).

To compare C1 to D6, the null hypothesis tested was that subjects have the
same probability of responding with “work” or “energy” on D6 as on C1; the
one-sided alternative hypothesis was that subjects are more likely to so respond
on D6 than on C1. Using a z-test for before/after task comparisons (Moore and
McCabe 1989), it was found that the data had a P-value of 0.00715 with respect to
the stated null and alternative hypotheses. The 90% confidence interval on the
difference of the two probabilities was 0.375±0.252. This indicates that the
observed data is quite unlikely to result if the null hypothesis is true. In other
words, the data suggests that the increase from 1/16 to 7/16 is statistically
significant. Note that the statistical test employed is not considered trustworthy
for such a small sample.

To compare D6 to J3, the null hypothesis was that subject probabilities for
being binned positive were the same for D6 and J3, against the two-sided
alternative hypothesis that the two probabilities were non-equal (in either
direction). Using the same standard analysis, a P-value of 0.719 was calculated.
The 90% confidence interval on the difference of probabilities was 0.063±0.286.
Again assuming that small-sample effects did not intrude, the data are consistent
with the null hypothesis of no change.
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To investigate whether the subjects binned as positive on D6 were the same
as those binned positive on J3, Table 3.21 was tested against the null hypothesis
that there was no correlation between subject binning on the two sessions, using
a chi-squared test. The resulting P-value was 0.15, indicating that it was only
somewhat unlikely that the data would result if subject binning was
uncorrelated. The table shows that of the six positive subjects in J3, only four
were positive in D6. While the overall probability of subjects responding
positively to the task remained roughly constant from Sessions D to J,
approximately one in three subjects changed bins.

J3: neg J3: pos J3: any
D6: neg 7 2 9
D6: pos 3 4 7
D6: any 10 6 16

Table 3.21: Two-way table for subjects including “work” or “energy” among
their PPTE responses for prompts D6 and J3 (same problem).

As a sensitivity check, the null hypothesis that the probabilities for subjects
binning as positive were the same for C1 and J3 was tested, against the one-sided
alternative hypothesis that the probability was higher for J3 than C1. The
resulting P-value was calculated to be 0.016, contradicting the null hypothesis
relatively strongly. The 90% confidence interval on the difference of probabilities
was 0.31±0.24.

For the comparison of C1, D6, and J3, the data support the hypothesis that
for the prompt problem used, an ensemble of subjects equivalent to our study
population would have been more likely to include “work” or “energy” in their
list of responses during Sessions D and J than during Session C, and that they
would have been equally likely for Sessions D and J.

C4, D2, andJ5
Problem C4 read:

A 30 kg box starts from rest on a frictionless horizontal floor. A force of 200 N is
applied to the box, pushing down at an angle of 45˚. How much work must the
applied force do to get the box moving at 1 m/s?

Problem D2 was identical except that “30 kg” was changed to “25 kg”, “200
N” was changed to “320 N”, and “1 m/s” was changed to “1.5 m/s”. Problem J5
was identical to problem D2.

For each subject’s list Session C of response terms to the prompt problem, the
subject was binned as “positive” if he or she included “energy” or “work-energy
theorem” as a response term or part of a response term. Subjects who mentioned
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neither term were binned as “negative”. Subjects who merely entered “work”
were binned as negative, since the problem itself explicitly asks for the work to
be determined. The same calculation of fractions as for the set C1, D6, and J3 was
carried out.

One of the subjects binned as negative for D2 did in fact produce the
response term “conservation” for D2, but also entered “Newton’s 3rd” and
“f = ma”. This was judged to be an insufficiently clear reference to the work-
energy theorem or energy conservation to be counted. Were this reference
considered sufficient, the fraction positive for D2 would be 7/16 rather than
6/16.

Session & Problem: C4 D2 J5

Fraction “positive": 3/16 6/16 6/16

Table 3.22: Fraction of subjects including “energy” or “work-energy theorem”
among their PPTE responses for prompts C4, D2, and J5 (same problem).

To compare C4 to D2, the null hypothesis used was that subjects have the
same probability of meriting the positive bin for D2 as for C4; the one-sided
alternative hypothesis was that subjects are more likely to be binned as positive
for D2 than for C4. Using the same analysis as above, and testing against the data
of Table 3.22, a P-value of 0.119 with respect to the stated null and alternative
hypotheses was calculated, an inconclusive result. The 90% confidence interval
on the difference of the two probabilities was 0.188±0.261.

To compare D2 to J5, the null hypothesis used was that subject probabilities
of being binned positive were the same for D2 and J5, against the two-sided
alternative hypothesis that the two probabilities were non-equal (in either
direction). Using the same standard analysis, the calculated P-value was 1.0. The
90% confidence interval on the difference of probabilities was 0.00±0.28. The data
are completely and obviously consistent with the “no change” hypothesis.

To investigate whether the subjects binned as positive on D6 were the same
as those binned positive on J3, Table 3.23 was tested against the null hypothesis
that there was no correlation between subject binning on the two sessions, using
a chi-squared test. The resulting P-value was 0.062. As with the comparison of
D6 and J3, four of the six positive subjects for J3 were also positive for D6. While
the overall probability of subjects responding positively to the prompt remained
constant from Sessions D to J, approximately one in three subjects changed bins
for this prompt also.

As a sensitivity check, the null hypothesis that the probabilities of subjects
binning as positive were the same for C4 and J5 was tested, against the one-sided
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alternative hypothesis that the probability was higher for J5 than C4. Since the
fractions for D2 and J5 are the same, the resulting P-value and confidence
interval are identical to the C4 to D2 test.

For the comparisons on the prompt problems C4, D2, and J5, the data are
inconclusive: although the pattern is similar to that seen for prompts C1, D6, and
J3, the results are not statistically significant. In light of the results for the
C1/D6/J3 tests, the results for C4/D2/J5 should be taken as weak corroboration.

J5: neg J5: pos J5: any
D2: neg 8 2 10
D2: pos 2 4 6
D2: any 10 6 16

Table 3.23: Two-way table for subjects including “energy” or “work-energy
theorem” among their PPTE responses for prompts D2 and J5 (same problem).

3.4.3.3. Conclusions and Discussion
The “control” comparison data support the hypothesis that a subject’s

proclivity to respond to a PPTE prompt with terms indicating the “correct”
conceptual approach to the prompt problem remains the same for two
consecutive sessions if the relevant physics is not addressed by an ongoing
course during the interim.

The “lecture coverage and exam studying” comparison data support the
hypothesis that subjects were more inclined to respond with work/energy terms
during Session D than Session C, and about equally likely to respond with work
and energy terms during Sessions D and J. In light of the control comparison, this
suggests that a PPTE task can be sensitive to the learning that occurs in students
on the time scale of a week.

While statistically significant, the support is weak, and the analysis of
statistical significance is itself questionable because of the small sample size.
Further studies with larger samples and a larger, more varied set of prompt
problems is warranted.

It is open to question whether subjects would have been more inclined to
respond with work and energy terms during Session D than during session C for
prompt problems for which work and energy ideas were not appropriate to the
solution. Since subjects had recently been heavily exposed to work and energy
ideas during the course, they might have been more inclined to respond with
such terms for any prompt problem. The similarity of “positive” rates between
Sessions D and J suggest that the increase from C to D was not such a temporary
aberration, but it is a weakness of the study design that no prompt problems
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were given in Sessions C and D for which work-energy ideas were not the best
solution, to be used as another control set.

3.4.4. PPTE Responses vs. Exam Problems
The previous subsection examined whether PPTE responses can reveal the

presumed evolution of subjects’ conceptual knowledge store due to experiences
associated with their physics course. This section investigates the PPTE task as a
probe of subject expertise by inquiring whether subjects’ PPTE responses to a
problem correlate with their performance on the problem as part of a course
exam. The results are generally inconclusive, due largely to an inadequate study
design.

Two of the problems from Exam 1 of the course were presented as PPTE
prompts during Session C. Five of the problems from Exam 2 were given as
PPTE prompts during Session E. Five of the problems from Exam 3 were given as
PPTE prompts during Session I. Subjects’ PPTE term response lists were
compared to their exam results to determine whether, for each problem, the
presence or absence of significant terms in the PPTE response list correlated with
success or failure of the corresponding exam problem. Unfortunately, many of
the exam problems were too easy, in the sense that only a small fraction of the
study subjects did not get them correct. This prevented the extraction of
statistically meaningful information from the analysis.

For a given problem, terms related to the “right” approach to the problem
were identified in subjects’ response lists, and also some terms which related to a
likely incorrect approach. For each subject, an identification was made of which
of these terms appeared in his or her PPTE response list for that problem prompt.
For each problem, a table of subjects vs. possible terms was then constructed,
indicating which subjects included which terms in their response list, and also
which subjects correctly answered the problem on the exam.

Table 3.24 displays an example of such a table. Each “x” in the “Exam
problem” column indicates a subject who chose the correct answer when the
problem appeared on a course exam. Each “x” in the “Terms in response…”
columns indicates a subject who entered that term, or a term with equivalent
meaning, in his or her list of PPTE responses for the problem. For subject
p151s99-15, the two “~” characters indicate that the subject entered a response
term ("centripetal") which approximated both of the column-heading terms
equally; the presence of this response term was judged to be significant, and so a
“partial” match was indicated on the table.
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 p151s 99-01 x x x x x x
 p151s 99-02 x x x
 p151s 99-03 x x x x x x
 p151s 99-04 x x x x x
 p151s 99-05 x x x
 p151s 99-06 x x x x
 p151s 99-07 x x x x
 p151s 99-08 x x x x
 p151s 99-09 x x x x
 p151s 99-10 x x x
 p151s 99-11 x x x x
 p151s 99-12 x x x x
 p151s 99-13 x x x x
 p151s 99-14 x x
 p151s 99-15 x ~ ~ x x x x x x
 p151s 99-16 x x x x
 Count: 8 4 2 9 6 12 15 3 4 4

Table 3.24: Exam success vs. presence of various terms in corresponding PPTE
response list, by subject.

No significant pattern is evident in this or any of the other problems: for no
problem does there appear to be a term or combination of terms whose presence
or absence in a PPTE response correlates significantly with exam correctness. The
statistical significance of a few example cases is analyzed below with a chi-
squared test.
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3.4.4.1. E4: Exam Problem 2A.17
PPTE prompt problem E4 and course exam 2 problem 17 read:

A pendulum is formed by attaching a mass, M=0.06 Kg, to
the end of a string 0.5 m long. The other end of the string is
attached to a nail so that the pendulum can swing freely in
a complete circle in the vertical plane. Assume no friction
between the nail and the string. Use g=10 m/s^2. If the
pendulum is set in motion so that its speed at the bottom of
the swing is 2 m/s, what is the tension in the string at this
point?

M=0.06  Kg

L=0.5 m

nai l

Solving the problem requires subjects to use the idea of centripetal force
(    mv r2 ) or centripetal acceleration (    v r2 ). Table 3.25 compares subjects who
correctly answered the exam problem to subjects who entered “centripetal”,
“v^2/r”, or “mv^2/r” as all or part of a PPTE response term.

exam
correct

exam
wrong total

 term present 4 2 6

 term absent 4 6 10

 total 8 8 16

Table 3.25: Comparison of presence of “centripetal”, “v^2/r”, or “mv^2/r”
among PPTE response terms to exam correctness for problem E4 (Exam 2A,
problem 17).

For the null hypothesis that the presence or absence of the terms is
uncorrelated with the correctness or incorrectness of the exam problem, a chi-
squared test yields a P-value of 0.30, meaning the data are not inconsistent with
the null hypothesis. The data do not provide significant evidence that the
presence of one of the terms “centripetal”, “v^2/r”, or “mv^2/r” correlates with
success on the exam problem.

The strongest correlation found for this problem was a negative one between
the presence of the term “free-body diagram” in a subject’s PPTE responses and
the subject’s correctness on the exam problem. The data is shown in Table 3.26.
For the “uncorrelated null hypothesis”, a chi-squared test yields P = 0.039, which
indicates that the null hypothesis is most likely false. However, the chi-squared
test makes assumptions that are not safe for a sample this small (Moore and
McCabe 1989). To illustrate the sensitivity of the P-value calculation to
fluctuations in a sample of this size: if the P-value is recalculated for the
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hypothetical case that one of the subjects in the “term present, problem incorrect”
bin had instead answered the problem correctly on the exam, then P = 0.15
results, which indicates a very weak statistical significance. The results here
should be interpreted as only suggesting a possible correlation.

Such a correlation does not seem likely from a theoretical perspective, either.
Drawing a free-body diagram should be a useful tool for solving the given
problem, since improper identification of the forces acting on the pendulum is a
likely mistake. It seems unlikely that the observed correlation does in fact
indicate a pattern that would be observed in a large population, as opposed to a
fluke of small-sample statistics. Correlations between exam correctness and the
presence or absence of the terms “work” or “energy”, “tension”, “weight” or
“gravity”, “net force”, “Newton’s 2nd law” or “F = ma”, and “acceleration” were
all checked for; considering the number of possible terms considered, it is not
surprising that a “possibly significant” correlation for one of them was found.

exam
correct

exam
wrong total

 term present 1 5 6

 term absent 7 3 10

 total 8 8 16

Table 3.26: Comparison of presence of “free-body diagram” among PPTE
response terms to exam correctness for problem E4 (Exam 2A, problem 17).

3.4.4.2. Discussion
Subject’s rate of correctness on the majority of the problems with exam

counterparts that were not discussed above was uniform enough — almost all
correct, or almost all incorrect — to make any possible correlation undetectable.
For the cases where there were enough correct and incorrect answers to make
analysis worthwhile, all problems proved to be as unenlightening as the case
discussed above, and none showed a correlation as strong as that found for “free-
body diagram”.

One possible interpretation of this is that the PPTE task does not reveal
information about a subject’s knowledge structure relevant to solving problems
of the sort found on the exams from the p151s99 course. Another is that the task
is sensitive to relevant knowledge structure information, but that the particular
comparison done in this study is too noisy to reveal it.

One likely source of noise is that subjects took the study session with the
PPTE prompts approximately a week after taking the corresponding exam. Much
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could have happened in that intervening week to influence their PPTE responses.
A probable influence is from the exam itself. The exam consisted of two phases:
an “individual phase” wherein students completed the exam on their own and
submitted their answer sheet (and from which results for this study were
drawn), and a subsequent “group phase” where students discussed the same
exam questions in groups of three and then submitted a group answer sheet. The
discussion that took place during the group phase could very easily influence
study subject’s thinking about the problem and thus their subsequent PPTE
responses.

Another likely source of noise comes from the fact that the course exams
were multiple-choice, which means subjects who did not know how to do the
problem could still get marked as correct by guessing the proper answer from
the list. If a subject could eliminate some possibilities via reasoning, he or she
could even guess with a nontrivial probability of success.

A better study to investigate the relationship of students’ PPTE responses to
problem-solving facility is recommended. Such a study should have subjects
respond to a PPTE prompt problem and then immediately thereafter solve the
problem in an open-ended, non-multiple choice format. Detailed comparison of
subject’s written solutions with their PPTE responses could shed light on the
significance, if any, of PPTE responses. For statistical purposes, the problems
chosen should span a range of difficulty, with many at a level such that subject
success rate is approximately 50%. And, obviously, a larger student sample is
necessary so that meaningful statistical analysis can be performed.

3.4.5. Summary of PPTE Findings
Section 3.3 began with a phenomenological study of the PPTE data. A

statistical description of response counts indicated that when each subject’s
overall mean PPTE response count is calculated, the variation within the
resulting set of subject means varies only slightly compared to the variation
within each subject’s set of response counts. Nevertheless, it was found that the
subject means correlate very strongly with the corresponding means for the
TPTE task. Averaged over prompts and subjects, mean response counts by
session do not show a noticeable trend over the study, unlike their TPTE
counterparts.

When response term frequencies were calculated, the resulting set of
frequencies showed a similar pattern to that of TPTE response term frequencies.
Specifically, only a few of the response terms were entered by half or more of the
subjects, and the most popular three or four responses were responsible for
approximately one quarter of all response counts for all subjects.
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By comparing subjects’ response sets when the same prompt problem was
presented during multiple sessions, and looking for response terms
corresponding to the key concepts necessary for the “right” solution to the
prompt problem, evidence was found that the PPTE task can be sensitive to
learning that occurs as a result of subjects’ physics course. Although the result is
well supported by the existence of appropriate control cases, its statistical
significance is open to challenge due to the fact that the study population was too
small to meet the requirements of the statistical tests employed.

When subjects’ response terms were compared to their performance on the
prompt problem when given on a course exam, no statistically meaningful
results were found due to small sample size and inadequate study design.

Because of the great variety of problem types employed as prompts in the
study, many more questions can be asked of the data than have been discussed
here. For example, response patterns to questionless problem situations can be
compared to those for standard problems and to those for isolated diagrams. The
analysis done so far, however, suggests that the small size of the study
population will prevent any findings of statistical significance. Such questions
should be investigated in the existing data, but only as a guide to suggest design
improvements for any follow-up studies.

Overall, analysis of PPTE data has revealed some tantalizing results, the
most significant being evidence that the task is sensitive to changes occurring in
subjects’ understanding due to course coverage. Since the overarching goal of the
ConMap project is to develop assessment methods that probe students’
conceptual knowledge structure for changes which occur during learning, this
result suggests that the goal might be achievable. Further study is definitely
indicated, with a larger study population to enable meaningful statistical
analysis. In addition, the addition of a problem-solving task designed to allow
comparisons of problem-solving performance on conceptually focused problems
with PPTE responses would be helpful.

3.5. Term-Prompted Statement Entry (TPSE) Data
Analysis
For the Term-Prompted Statement Entry (TPSE) task, subjects were

presented with a prompt term and asked to respond with statements about that
prompt term which said something important about the term. A statement was
defined to be a single sentence expressing a single idea or relationship. Subjects
were allowed to enter as many statements as they could in four minutes, up to a
maximum of nine.
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 subject accel. force energy f r i c t i o n momentum mean

p151s99-01 9 7 5 .5 5 .5 6 .5 6 .70

- 0 2 6 6 4 6.5 5 .5 5 .60

- 0 3 6 7 7 5 7 6.40

- 0 4 6 8 6 5 6 6.20

- 0 5 4 5.5 4 4.5 4 4.40

- 0 6 5.5 6 .5 6 5 4.5 5 .50

- 0 7 8 8 7 5 6 6.80

- 0 8 8 9 5.5 9 8 7.90

- 0 9 7.5 6 .5 8 7 6 7.00

- 1 0 8 8 4.5 6 7 6.70

- 1 1 7 7.5 6 6 5 6.30

- 1 2 7 6.5 5 .5 6 4 5.80

- 1 3 9 9 8 9 7 8.40

- 1 4 6 5 5 4 6 5.20

- 1 5 9 9 9 9 9 9.00

- 1 6 7.5 7 4.5 7 6.5 6 .50

mean 7.09 7.22 5.97 6.22 6.13

I 2_TPSEF1_TPSE

Table 3.27: Number of response statements entered by each term for each TPSE
prompt of p151s99 study. If a subject’s final statement was cut off before it was
complete enough to be clearly identifiable, it was counted as 0.5 of a response.

The p151s99 study was the only ConMap study to include the TPSE task.
Table 3.27 displays the number of statements entered by each subject for each
TPSE prompt in that study. Some of the entries indicate the entry of a non-
integer number of statements (e.g. 5.5 or 7.5). When the allotted time had passed,
the task administrator sometimes cut subjects off while they were in the middle
of writing a statement. If the resulting partial statement was complete enough to
allow unambiguous determination of what the complete statement was intended
to be, it was counted as a full response. If it was not complete enough, it was
counted as one-half statement, even if only one or two words were written.

Despite receiving explicit instructions to include only one idea (proposition)
per statement, subjects displayed a distressing inclination to lump more than one
idea together in a statement. Sometimes subjects used a semicolon to fit two
distinct statements into one sentence and call it one statement. In future studies
with the TPSE task, subjects should be given a training period during which such
tendencies can be noticed and chastised by an administrator. In addition, subjects
who forget the prohibition against compound statements should be corrected
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after each prompt/response set. In a computer-administered version of the task,
some level of human vigilance must be maintained.

It is regrettable that subjects were occasionally cut off in the middle of
writing a statement; it seems a waste of valuable data to throw away partially
complete statements that the subject had presumably fully thought out. Future
studies should allow subjects to complete any statement they are in the process
of writing when time expires.

One line of analysis of TPSE data that has not yet been pursued is a
comparison of the physics terms that appear within subjects’ response statements
to the terms that appear in their TPTE response term list for the same prompt
term, and whether the relationships between terms described by TPSE
statements coincide with relationships indicated by HDCM links. The TPTE to
TPSE comparison could shed light on the kinds of relationships that occur
between prompt term and response terms (and possibly between response
terms) in the TPTE. The HDCM to TPSE comparison could help illuminate
subjects’ interpretation of the HDCM task and what conceptual connections they
consider to be a “link”.

3.6. Summary of Results from ConMap Analysis
FTE analysis characterized the distributions of the data’s thinking and typing

times and the evolution of term entry rate during task completion. A distinct
spike-plus-peak distribution of thinking time logarithms was discovered. It was
found that shorter thinking times tend to occur between pairs of terms relatively
unconnected in meaning, as judged by a domain expert. Subjects’ jump rates
showed some correlation with their course exam performance.

Analysis of HDCM data provided weak evidence that the number of nodes,
the number of links, and the ratio of links to nodes in a subject’s map might
correlate with exam performance.

TPTE mean response counts were found to be weakly characteristic of
individual subjects, when averaged over prompts and sessions. When averaged
over prompts and subjects, they were found to vary slightly but systematically
by session, decreasing monotonically for the first five sessions of the study and
then increasing for the eighth and tenth. For any given prompt term, a small
subset of the set of all responses provided by all subjects was common to many
or most subjects, and was responsible for most of the population’s response
counts. When the same prompt was presented in different sessions, most
response terms’ frequencies were relatively unchanged, but a few changed
dramatically, suggesting the impact of course-related learning.
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Similarity, a measure of the overlap between a subject’s TPTE response list
and the rest of the study population’s lists, was found to be weakly characteristic
of individual subjects, and to have a weak but statistically significant correlation
with exam scores. Similarity was found to be more strongly characteristic of
individual prompt terms. There was some evidence that similarity values tended
to increase for a subset of subjects and prompt terms as the semester progressed.

Subjects’ TPTE response lists were given a score by domain experts according
to the merit of the response terms contained, and for the one prompt term
analyzed the resulting scores were found to correlate significantly with the
subjects’ exam scores when averaged over three sessions’ presentation of the
same prompt. Subjects’ TPTE response lists were found to overlap significantly
with their HDCM maps for the same prompt term, especially with the subset of
map nodes closest to the prompt node.

The phenomenology of PPTE response data was found to be similar in many
ways to that of TPTE response data: response counts were also weakly
characteristic of individual subjects, although no trend by session was found. The
pattern of response term frequencies was similar but slightly more varied.
Evidence was found that subjects’ response lists “improved” on the time scale of
a week when relevant topic material was covered in class during that week,
where “improvement” means the lists were more likely to include terms
indicating the key concepts in the prompt problem’s solution. Without
contemporaneous course coverage, lists did not show such a change. This
suggests the PPTE task can be sensitive to learning that occurs in domain
material. A comparison of PPTE response lists to subjects’ success rates for the
same prompt problem on an exam revealed no statistically meaningful results.

Overall, results from the analysis of ConMap data suggest that the various
ConMap-style probes are sensitive to at least some aspects of students’ expertise
and the changes that occur in it as learning occurs. Because of the preliminary
nature of the study design and the small sample populations employed, few of
the results should be taken as more than suggestive. Further studies, however,
are clearly indicated. In addition, phenomenological descriptions of patterns
found in the data can serve as a first target during the construction of theoretical
models of subjects’ underlying cognitive processes.

In most of the analyses of task data, weak evidence was found for the
correlation of various measures of subject productivity — response counts of
various sorts — with exam performance. This may indicate nothing more than a
hypothetical “conscientious subject effect”: more conscientious students tend to
perform better in courses, and also tend to apply themselves more earnestly to
study tasks, resulting in longer response lists, more elaborate concept maps, and
the like. It does not necessarily follow that these various measures of ConMap
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task productivity are sensitive to subject’s domain expertise. Any further studies
must confront this possibility directly, and design in methods to separate such an
effect from more significant causal connections.
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4. ConMap Modeling
In physics and many others scientific disciplines, the first step in

investigating a system is to devise experimental probes, and the second step is to
gather a set of measurement data. The third is to look for patterns which
characterize the data (phenomenology). The fourth is to construct theoretical
models of the system which “explain” or “predict” the observed patterns. When
a relatively comprehensive and successful model exists, the system is often said
to be “understood”.

This prescription is of course oversimplified; real research involves frequent
iteration through the various steps, and it is often difficult to separate them quite
so cleanly. Furthermore, the patterns one observes and attempts to model often
depend on the preconceived model one brings to the research. Nevertheless, the
paradigm has demonstrated its merits. With the results of Chapter 3’s analysis of
ConMap data, the time seems propitious for initial forays into the construction of
models of knowing, learning, and thinking which can “explain” the findings.

This chapter introduces two approaches to modeling the temporal aspects of
Free Term Entry (FTE) data. Section 4.1 presents the random distribution model,
which is essentially a unified phenomenological description with no insight into
cognition or knowledge. Section 4.2 presents the matrix walk model, which does
begin with a quantitative representation of cognitive structure. Both are as
successful as could be expected at simulating FTE temporal data, although room
for improvement is found and indicated. The parameter choices necessary to
make the matrix walk model work, however, are intuitively unsatisfying and
suggest that a different approach to constructing a knowledge-representing “link
matrix” is necessary.

For these initial attempts, only the temporal aspects of FTE data was
considered. Formalizing and quantifying the meanings of entered terms presents
formidable problems, and other tasks do not present the large data sets desirable
for confident statistical analysis. Extending the two models to TPTE data should
not be overly difficult.

4.1. Random Distribution Model for FTE Times
Subsection 3.1.1 presented a phenomenological description of the FTE data

gathered during ConMap studies. It was argued that thinking time sets obtained
from subjects’ FTE task data typically show a logarithmic “spike plus peak”
distribution: when a histogram of the logarithms of a subject’s thinking times is
constructed, it looks like a narrow, tall spike superimposed on the leading edge
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of a broad, approximately Gaussian peak. When data sets from all subjects of one
study were rescaled to a common mean and width and then aggregated into one
large data set, the histogram of that set’s logarithms could be well fit by a
superposition of two Gaussian peaks.

Successor correlation plots for thinking times in FTE data did not show any
correlation between successive thinking times. The only correlation found among
thinking times was a general tendency for longer thinking times to appear nearer
to the end of the set, causing subjects’ average term entry rate to decrease as the
task progressed.

Similarly, typing times were found to be approximately describable by a log-
normal distribution (i.e. histograms of the typing time values’ logarithms
resembled the probability density function of a Gaussian distribution). Typing
times also showed no correlation between successive values, and, unlike thinking
times, did not show a noticeable trend towards larger values as the task
progressed.

These observations suggest that temporal aspects of FTE task data might be
modelable by suitable random number distributions. The trend to decreasing
term entry rate (increasing thinking times) would require a random number
distribution whose parameters vary with elapsed task time, a complication
which will be ignored for the moment. This section presents such a model of FTE
temporal data. It is a purely phenomenological model, in that it incorporates no
assumptions about the cognitive processes or knowledge structures underlying
FTE task performance and does not attempt an explanation at that level; it
merely attempts to predict as many of the statistical features of FTE data sets’
time values as possible. This model will be referred to as the random distribution
model.

4.1.1. The Model Defined
Thinking time sets from individual subjects’ data proved too noisy to allow a

satisfactory fit of a function with five parameters, required for a double-Gaussian
or other similarly general two-peaked function. As a result, no functional form
was found to describe the spike-plus-peak shape characteristic of FTE thinking
time histograms. Instead, the random distribution used for the model was the
logarithmic double-Gaussian, whose probability density function fit the data set
produced by standardizing and aggregating all subjects’ data from a study.

According to the model, each successive thinking time in a FTE data set is
drawn independently from a logarithmic double-normal random distribution,
whose probability density function (PDF) is described by
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where µ1, σ1, µ2, σ2, and α are parameters of the model. This is equivalent to
taking the exponential of numbers drawn independently from a (non-
logarithmic) double-normal random distribution, whose PDF is
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A histogram of the logarithms of thinking times generated by such a model
should therefore have the desired dual-Gaussian shape.

Similarly, each successive typing time in a FTE data set is drawn
independently from a log-normal random distribution, whose PDF is described by
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where µ3 and σ3 are model parameters. This is equivalent to taking the
exponential of numbers drawn independently from a (non-logarithmic) normal
(Gaussian) random distribution, whose PDF is
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A histogram of the logarithms of typing times so generated should therefore
have the desired Gaussian shape.

A synthetic data set is generated from the model by producing a set of start
times and enter times according to the following prescription: the first event’s start
time is defined to be zero, and its enter time (equal to typing time, for the first
term) is drawn from the log-normal distribution of Equation 4.3. Each successive
event’s start time is equal to the previous event’s enter time plus a thinking time
drawn from the logarithmic double-normal distribution of Equation 4.1, and its
enter time is equal to its start time plus a typing type drawn from the log-normal
distribution of Equation 4.3. The prescription is repeated until data for the
desired number of events have been generated.

4.1.2. Comparing Model Output to Subject Data
By construction, the model will produce data whose thinking times and

typing times obey the distributions found in Subsection 3.1.1, so obedience these
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distributions cannot be used as a test of the model. It is not expected to show the
tendency to decreasing term entry rate found in real data. In the absence of other
statistical tests with which to compare synthetic model-generated and real study-
gathered data, timeline plots were generated for several sets of synthetic data
and compared by eye to timelines for real subjects’ data.

Specific values of model parameters were required. For comparison to
subjects’ data from the p151s99 study, values for µ1, σ1, µ2, σ2, and α  were taken
from the fit to aggregated data done in Subsection 3.1.1 (cf. Figure 3.11), but these
values were for data that had been standardized to a mean of zero and a width of
one. The model values were “un-standardized” by the inverse of the
transformation used to standardize subject p151s99-01’s data. Values for µ3 and
σ3 were taken directly from a normal-distribution fit to subject p151s99-01’s set of
typing times (listed in Table 3.2). A number of terms was generated equal to the
number of terms in the subject’s data set. Subject p151s99-01 was chosen because
his or her FTE data was typical in most respects, but contained a relatively large
number of terms, resulting in less noise and better fits.

For the timeline comparisons done, synthetic data sets did not show the
increasing sparseness evident in real subjects’ data, as expected. Apart from this,
the synthetic data sets were not visibly different from real data sets except for the
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Figure 4.1: Timeline of FTE entries for study p151s99, subject 01 on task J1_FTE.
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Figure 4.2: Timeline for synthetic data set generated from random distribution
model, with model parameters taken to match J1_FTE data of subject p151s99-01.
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Figure 4.3: Same as Figure 4.2, with a different seed to the random number
generator.

expected and nonsystematic effects of randomness. As an example, Figure 4.1
shows a timeline for subject p151s99-01 on task J1_FTE; Figure 4.2 and Figure 4.3
show timelines for two synthetic data sets generated as described above.



138

4.1.3. Decreasing Term Entry Rate
The model can be elaborated so that it exhibits a decreasing term entry rate

during simulated FTE tasks. For data generated from the model, the rate of term
entry events has a statistical average (for an appropriately sized moving
window) equal to the inverse of the mean time between events, which is the
expectation value of the thinking time plus the expectation value of the typing
time for their respective distributions:

    
r t t= = +( )− −

∆t think type
1 1

(Eq. 4.5)

The expectation value for typing times drawn from the log-normal distribution
of Equation 4.3 is
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and the expectation value for thinking times drawn from the logarithmic double-
normal distribution of Equation 4.1 is
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The term entry rate r can therefore be expressed as a function of the model
parameters:
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If r is to vary with elapsed task time, then one or more of the model
parameters α, µ1, σ1, µ2, σ2, µ3, and σ3 must depend on time. As discussed in
Subsection 3.1.1, subjects’ thinking time distributions evolved noticeably over the
course of a FTE task, with longer times being significantly more likely to occur
later in the task, but typing time distributions appeared to remain relatively
unchanged. It therefore seems reasonable to keep µ3 and σ3 constant and allow
the other parameters to vary.

Which of those parameters should vary and what the functional form of their
time dependence should be are questions that have not yet been investigated.
The primary objective of the modified model should be to demonstrate term
entry rate vs. elapsed task time behavior statistically equivalent to real subjects’
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data. Given that the distribution for thinking times has five parameters which
can be assigned a completely arbitrary time dependence, and given that
calculations of term entry rate for subject data are extremely noisy even with
large moving-window averages, parsimony considerations alone are unlikely to
suggest how the time dependence should be incorporated. Further statistical
analysis of thinking time distributions could help, perhaps by constructing and
fitting histograms for subsets of the data drawn from early, middle, and late
periods of the task. Additional studies designed to gather data specifically for
this purpose might be required.

4.1.4. Summary and Discussion
It has been shown that a relatively simple statistical model of FTE data, in

which thinking times and typing times are independently drawn from
appropriately parameterized random distributions, can produce synthetic data
which resembles real subjects’ data in most respects. The primary failing of the
model is that it does not predict that the rate of term entry during a task
decreases with elapsed task time. A strategy for extending the model to address
this failing was presented.

Because the model is purely phenomenological, it is not particularly
illuminating; it is more a summary of the statistical behavior observed in the data
than an explanation for that behavior. It does not address the mechanisms of
knowledge, knowledge access, learning, cognition, and task performance
required to “understand” FTE data, but buries all such detail within the
randomness of the distribution.

4.2. Matrix Model for FTE Times
In an initial and exploratory attempt to construct a model more meaningful

than the random distribution model of the previous section, the matrix walk model
was developed. The model is intended to be a simple yet reasonable description
of some of the cognitive processes underlying FTE task performance. It can
produce a distribution of thinking times that is approximately log-normal. The
log-double-normal or “spike plus log-normal” distribution found in the real FTE
data have not been attempted yet, but are in principle possible. The model
naturally demonstrates decreasing term entry rate throughout a simulated FTE
task.

4.2.1. Description of the Model
A subject’s conceptual knowledge store for a particular domain is

represented as an N by N link matrix L of real numbers, where N is the number of
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knowledge elements in the structure. These knowledge elements are assumed to
represent concepts and their associated terms. Each matrix element Li,j (i ∈ {1, 2,
…, N}, j ∈ {1, 2, …, N}) represents the strength of the “link” from element j to
element i:  the degree to which element j “triggers” or “brings to mind” element
i. L is not necessarily symmetric, and the diagonal elements Li,i are irrelevant. The
model does not ascribe a specific meaning to any of the knowledge elements.

The “dynamics” of the model is an algorithm called “the walk” which
represents performance of an FTE task, and which produces simulated FTE data
analogous to the data collected from subjects. The algorithm is a set of rules for
generating a list of the knowledge elements {ak} representing a term list, given a
specific matrix and a choice for the initial “prompt” term. A thinking time τk is
determined for each element. The model does not address typing times; on the
assumption that typing times depend primarily on the letters appearing in terms
and are relatively independent of terms’ cognitive associations, a thinking time
for each term can be drawn from a random distribution. The distribution used
for this was the same as the typing time distribution for the random distribution
model of Section 4.1. Once lists of elements, thinking times, and typing times
have been generated, they can be used to construct corresponding lists of start
times and term entry times, completing the construction of a simulated data set.

The walk is defined by the following steps:

1. The first “active” element is arbitrarily chosen as element one: a0 = 1.
There is no associated thinking time. This element is ineligible for
future selection.

2. Given a currently active element ak, the next active element is chosen to
be the one for which the link strength La ak k+1 ,  is maximal, excluding
previously-active elements a0, a1, …, ak. In other words, the next
element chosen is the one linked to most strongly from the set of all not
yet chosen.

3. The thinking time for the recall process of step 2 is defined to be
τ i a aL

k k+ = ( )+1 1
τ , , where τ(s) is a recall function which will be discussed

below.

4. Update the “counter” variable k → k + 1.

5. Go back to step 2 and repeat, unless a criterion for task termination (e.g.
total number of terms or elapsed task time) has been met, in which case
the task is finished.
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To complete the model, values for the matrix elements of L must be
specified, and the recall function τ(s) must be specified. (In the notation used
here, τ(s) represents a mathematical function, while τk represents one particular
thinking time value.)

In order to keep initial investigations of the model as simple as possible and
facilitate the statistical analysis that follows, the link matrix was populated with
link strengths randomly drawn from a distribution uniform between zero and
one, except for diagonal elements which were set to zero. The merits of this
choice will be discussed below.

4.2.2. Choice of Recall Function
For the model as described above, the thinking time associated with a

particular FTE response element (term) is uniquely determined by the link
strength to that element from the previously entered element. The recall function
τ(x) determines the mapping between link strength value and thinking time. The
following criteria were set for the recall function:

• It should tend to small values (zero or some specified minimum
possible thinking time) for link strengths approaching their maximum
possible value;

• It should tend to infinity for link strengths approaching their minimum
possible value;

• It should be a relatively simple, well-behaved mathematical function
amenable to analysis.

The first two criteria reflect the intuitive notion that strong conceptual
connections should produce quick responses, while weak connections should
produce long responses. Since FTE thinking times in the study data extended
over two orders of magnitude, with vanishingly small frequencies of the largest
times, having the recall function tend asymptotically to infinity seemed
appropriate. The third criterion enforces parsimony and analytical convenience.

For link strengths between zero and one, two candidate recall functions are
the logarithmic recall function

τ αx x( ) = − ( )ln (Eq. 4.9)

and the power-law recall function

  
τ x x( ) = −( )−α βγ (Eq. 4.10),



142

where α, β, and γ are arbitrary parameters within the ranges α > 0, 0 < β ≤ 1, and
γ ≥ 1. The logarithmic recall function is simpler (has fewer parameters); the
power-law allows more tuning via parameters. For both functions, the parameter
α sets the time scale. For the power law, β determines the minimum possible
thinking time, and γ controls the relative abundance of long vs. short thinking
times.

It is not necessary to generate many data sets with the model, trying various
wild guesses for the parameter choices for both recall functions, in order to get a
sense of which recall function and what approximate parameter values might
best fit the observed FTE data. Instead, it is possible to work backwards from the
desired distribution of thinking times to find an appropriate recall function. For
initial investigations, a log-normal distribution of thinking times was chosen as
the goal. Since the FTE data was crudely log-normal, producing such a
distribution with the model seemed a valuable demonstration. Predicting the
“spike plus peak” appearance of subjects’ FTE thinking time sets with a more
complicated recall function has not yet been attempted.

Finding a recall function which provides the appropriate distribution of
thinking times is done by deriving an expression for the probability density
function (PDF) of the thinking times produced by the model, for a given
distribution of link strengths and choice of recall function. A simplification is
made to remove the complication imposed by the fact that the distribution
changes as elements are chosen and the pool of “eligible” elements dwindles: it is
assumed that whenever an element is chosen and made ineligible, a new element
with new randomly-chosen link matrix elements replaces it. This is equivalent to
assuming that the number of elements chosen during a complete FTE task is
much smaller than the total number N of available elements. Another way to
look at it is that the distribution derived only describes the first thinking time of a
task for each of an ensemble of model subjects. Since the calculation is only
intended to aid in the selection of a recall function and reasonable first
approximations for the recall function’s parameters, this simplification is not a
major compromise.

The model prescribes that an element is chosen for “term entry” by finding
the j for which Li,j  has the largest value, given the previously chosen (or initially
seeded) element i. This is equivalent to choosing the largest of a set of N – 1
numbers drawn randomly and independently from a distribution uniform
between zero and one. The probability distribution for the result is therefore

    p s N sN( ) = −( ) −1 2 (Eq. 4.11),
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where s is the value of the selected link strength (matrix element). This
distribution has the distinctive feature that for large N it very strongly weights
strengths close to one and assigns almost zero probability to other values. The
implications of this feature are important and will be discussed below.

Given a recall function τ(s), the distribution of thinking times q(τ)
corresponding to the distribution of selected link strengths p(s) is described by
the relation

    
q p q p s

sτ τ τ τ τ
τ

( ) = ( ) ⇒ ( ) = ( )( ) ( )
d s ds

d
d

(Eq. 4.12),

where s(τ) is the recall function τ(s) inverted. If the desired distribution q(τ) is
known, the recall function can be solved for by integrating Equation 12 to get
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(Eq. 4.13),

performing the integrals, and solving for τ in terms of s. Note that the limits of
integration have been chosen so that the low end of the τ range corresponds to
the high end of the s range, since τ is intended to be a decreasing function of s.

To produce thinking times with a log-normal distribution,
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where µ and σ describe the mean and width of the peak, respectively, on a
logarithmic plot. Inserting this and Equation 4.11 into Equation 4.13, integrating,
and solving for τ results in

    
τ µ σs sN( ) = − −( )( )− −exp erf2 2 11 1 (Eq. 4.15),

where erf–1() is the inverse of the error function defined by

    
erf expx dt t

x

( ) = −( )∫2 2

0π
(Eq. 4.16).

The inverse error function can be evaluated numerically but is analytically
problematic, suggesting that one of the candidate recall functions presented in
Equations 4.9 and 4.10 would be a better choice for the model if it could
reasonably approximate Equation 4.15 with the right parameter choices.
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Figure 4.4: Comparison of two candidate recall functions with the recall function
derived for a log-normal distribution of thinking times. Curves for the candidate
functions are the result of a chi-squared fit, with best-fit parameters shown.

Figure 4.4 compares the recall function in Equation 4.15, derived from a log-
normal distribution, with the logarithmic and power-law recall functions of
Equations 4.9 and 4.10. For the derived function, N = 5 has been used for
illustrative purposes. N ≥ 200 would be more realistic, but the range of values
produced by the function for large N is so extreme that numerical overflow
problems prevent the construction of an accurate plot. The parameter values for
the logarithmic and power-law functions have been chosen for maximum
agreement with the derived function, according to a chi-squared curve fit.

It is clear from the plot that at least for small N, the power-law recall function
can better approximate the log-normal-derived recall function than can the
logarithmic recall function. Furthermore, the best-fit value of β is effectively
unity. These two results hold for other relatively small values of N (not shown),
suggesting that the best choice for a model recall function would be the power-
law, simplified by fixing β = 1.

Using Equation 12, the approximate distribution of early thinking times
generated by the model (before element ineligibility becomes a significant effect)
can be determined:

    
q τ

α γ
τ
α

β
γ( ) = − +





− − +




N

N

1
1

1

(Eq. 4.17).
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As discussed during analysis of the study data, it is more convenient to work
with the logarithms of the thinking times. The distribution of thinking time
logarithms for the model can be derived from Equation 17 with a simple change
of variables, yielding

    
r z e ez z z z( ) = +( )− − − +( )

η β
η

0 0
1

(Eq. 4.18),

where     z ≡ ( )ln τ ,     z0 ≡ ( )ln α , and     η γ≡ −( )N 1 . This distribution ought to resemble
a Gaussian curve, and it does, as seen in Figure 4.5. With β fixed at unity, the
model only provides two parameters to control the shape of the distribution,
since N and γ always appear in the same combination (labeled η). α determines
z0, a horizontal axis offset (equivalent to setting the time scale for thinking times).
η controls the peak width and also impacts the location of the peak maximum, as
demonstrated by Figure 4.5. With parameters to control both peak width and
location, the distribution ought to be capable of modeling real FTE data.
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Figure 4.5: Probability distribution function r(z) for logarithms of thinking times
generated by power-law recall function, for a range of values of the parameter η
and for β = 1.

4.2.3. Comparison of Model Results with Study Data
The model, with the power-law recall function, was used to generate

synthetic FTE data. The distribution function of Equation 4.17 was used to
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estimate parameter values which would result in a distribution comparable to
subject p151s99-01’s distribution of thinking time logarithms for task J1_FTE.
This subject was chosen because he or she demonstrated an unusually large
number of response terms but appeared otherwise typical, resulting in less noisy
data than that of most other subjects. Because the goal was to demonstrate that
the model is capable of matching the general characteristics of FTE data, not to
model the details of individual subjects, choosing one subject as an archetype
introduces no compromises.

This provided initial guesses for η and α. Additional information is required
to determine N and γ from η. The choice of N affects how term entry rate changes
as the task progresses: if N is much larger than the total number of terms C
entered during the task, then the term entry rate does not change significantly;
but if N is only slightly larger than C, term entry rate drops drastically, since only
a few elements remain near the end. One can think of the parameter η changing
throughout the task, with

    
η

γ
η

γk

N k k≡ − − = −1
0 (Eq. 4.19)

being the value after k term entry events. As ηk drops throughout the task, the
distribution of resulting thinking times spreads and moves to higher values (see
Figure 4.5), causing the rate of term entry to drop. Using this behavior to
determine a reasonable estimate for N would require more precise data on FTE
term entry rates than is currently available. Therefore, values of N in the range of
200-500 were explored numerically.

With initial parameter guesses in hand, the model was implemented on a
computer and run to generate a synthetic data set. The simulation was
terminated after 175 events had been generated, since the subject data being
compared to consisted of 174 events. This was repeated many times for varying
parameter values until a parameter set was found which produced data
reasonably similar to the target subject’s FTE data. More specifically, a quantile
plot was constructed for each model data set, and fit with a log-normal
cumulative distribution function; the parameter set chosen produced the same
best-fit parameters as the same fit to the target subject’s data. Since the intent was
to demonstrate the model’s general capability to produce reasonably realistic
data, this was considered sufficient tuning of the parameters.

The final set of parameter values chosen was N = 300, γ = 75, and α = 15, with
β still fixed at 1. The resulting quantile plot and histogram for one instantiation
(i.e. one randomly generated link matrix) are shown in Figure 4.6 and Figure 4.8,
along with a best-fit log-normal curve (actually a best-fit normal curve to the
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logarithms of the thinking times). For comparison, the equivalent plots for
subject p151s99-01’s FTE data are shown in Figure 4.7 and Figure 4.9.
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Figure 4.6: Thinking time quantile plot for model-generated data, using N = 300,
γ = 75, α = 15, and β = 1. The best-fit normal (Gaussian) CDF to the thinking time
logarithms is shown.
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Figure 4.7: Thinking time quantile plot for subject p151s99-01 on task J1_FTE,
with best-fit normal (Gaussian) CDF.
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Figure 4.8: Histogram of logarithms of thinking times for the model data
displayed in Figure 4.6, with PDF curve for the best-fit normal distribution.
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Figure 4.9: Histogram of logarithms of thinking times for the subject data
displayed in Figure 4.7, with PDF curve for the best-fit normal distribution.

It is evident from these plots and from similar plots for other model runs that
the model is capable of producing thinking time distributions that resemble real
FTE thinking time distributions, but without the leading spike seen in most
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subject’s data. The model generally produces more outliers on both sides of the
distribution than is seen in subject data. Low-end outliers could perhaps be
eliminated by choosing a value of β lower than 1.

Figure 4.10 shows a timeline for the same model-generated data (including
randomly-generated typing times); for comparison, Figure 4.11 shows a timeline
for subject p151s99-01’s data. The two timelines are not unreasonably different,
aside from one long gap in the model timeline due to one of the aforementioned
long-time outliers. The model data does show a tendency towards decreasing
term entry rate as the task progresses, and longer thinking times are significantly
more likely to be found during the later part of the task.

Figure 4.12 and Figure 4.13 compare plots of term entry rate vs. number of
terms entered for the model and subject data. The plots are not qualitatively
dissimilar, aside from the dip to zero that the model-generated data takes,
corresponding to the long thinking time outlier. This confirms that the model
demonstrates decreasing term entry rates throughout an FTE, as seen in the
study data.

4.2.4. Discussion
The matrix walk model presented here has proven capable of modeling most

of the general features of FTE thinking time data. It can reproduce the general
log-normal statistical distribution of thinking times, although with the
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Figure 4.10: Timeline for model-generated data of Figure 4.6.
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Figure 4.11: Timeline for subject p151s99-01 data on task J1_FTE.
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Figure 4.12: Term entry rate vs. number of terms entered for model-generated
data of Figure 4.6.

simple recall functions considered so far it cannot reproduce the log-spike-plus-
normal or log-double-normal distributions which more accurately describe
thinking times. It naturally produces larger thinking times later in a simulated
task, causing term entry rate to generally decrease, in accord with the behavior of
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Figure 4.13: Term entry rate vs. number of terms entered for subject p151s99-01
on task J1_FTE.

subject data. The model seems to produce more distant outliers than are found in
subject data.

Thus, the model appears relatively successful, and might even be modifiable
to produce a double-normal or spike-plus-normal distribution of thinking time
logarithms. However, the model is unsatisfying in one significant aspect: the size
of the parameter γ needed to produce a reasonable thinking time distribution.
For plausible model output, it was found that η = (N – 1)/γ must be close to 4.0,
and N must be approximately 300, which requires γ to be approximately 75. This
can be interpreted in terms of distributions. The distribution of link strengths
chosen according to the model’s next-element selection algorithm is given by
Equation 11. For large N, this distribution is extremely heavily weighted in favor
of values very close to one: the mean value of the distribution is (N – 1)/N, which
is 0.9967 for N = 300. This makes sense: for each element selection, the strongest
of a set of N – 1 strength values is being selected.

Because all strengths responsible for thinking times are therefore extremely
close to one, with very little variation, a hypersensitive recall function is required
to produce an acceptable range of thinking times. Thus γ, the exponent in the
power law recall function of Equation 10, must be huge. This is unacceptable for
a model that aspires to be cognitively interpretable.

Inspection of FTE response terms entered during the studies shows that
many terms entered by subjects are connected only tenuously if at all to the
previous term, and analysis showed that these connections tend to correlate with
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longer thinking times. It therefore seems reasonable to insist on a model in which
longer thinking times result from weak links, not from links almost equal to the
strongest links.

This suggests that the link matrix representing connections between
knowledge elements should not be filled with numbers randomly drawn
between zero and one, but according to a different scheme. One possibility is to
fill a randomly-chosen subset of the elements with numbers between zero and
one, and set the rest to zero: a “sparse matrix”. If the number of nonzero
elements in each column is the same, defined to be M, then all of this section’s
calculations for the uniformly-filled matrix walk model hold except for
Equation 4.19, with M replacing N. Effectively, this modification allows one to
reduce the parameter N to a less problematic value without “running out of
elements” too soon in the task.

If the statistics of the resulting thinking times are still not appropriate, one
might consider filling the matrix with strength values in a correlated way,
resulting in “clusters” of strongly interconnected elements, with sparser, weaker
connections between elements of different clusters. The resulting FTE “walk”
through the matrix should encounter all of the elements in such a cluster, and
then follow a weaker link to a new cluster. Such an approach would prevent the
random-distribution-based analysis performed above, but also seems to capture
current qualitative understanding of how physics knowledge is structured. FTE
subjects certainly perceive themselves to enter a set of closely-related terms (e.g.
on “circular motion” or “types of forces”), and then follow a weaker connection
to another tightly-associated set. Fractal algorithms for generating such a link
matrix have been considered but not yet implemented.

In fact, the “large γ problem” found for the uniformly-filled matrix may be
interpreted as evidence that a uniform matrix of randomly chosen numbers is not
a good model of a subject’s conceptual knowledge store, and that other, sparse or
correlated-element models should be investigated. This is good: as experimental
evidence constrains our choice of model, it shapes our understanding of the
system.
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5. Conclusion
The purpose of the ConMap research project has been to investigate the

utility of a particular set of proposed assessment tools — brief, computer-
administered tasks for eliciting conceptual associations — for probing the quality
and extent of a physics student’s conceptual knowledge structure in an
introductory physics domain. Three component goals were identified and
pursued:

1. Devise and test possible strategies for probing physics students’
knowledge structures (probe design);

2. Search for potentially meaningful patterns and correlations in data
provided by the probes (data analysis); and

3. Develop quantitative models of knowledge structure and access
consistent with the gathered data (modeling).

A number of interesting and promising results are summarized below.

5.1. Significant Findings

5.1.1. Free Term Entry (FTE) Task
Because of the size of FTE data sets, statistical patterns the set of subjects’

response times could be well identified. It was found that subjects’ thinking time
sets and typing time sets both obey a generally log-normal distribution, and that
thinking time distributions have a sharp leading spike. Knowledge of these
distributions provides a target for cognitive modeling.

Two models for FTE timing data were constructed. The random distribution
model demonstrated that most of the statistical behavior of FTE times could be
reproduced by randomly chosen values drawn from appropriate distributions,
without specifying any detailed mechanism. The model did not reproduce the
trend towards decreasing term entry rate with elapsed task time, but additional
model parameterizations were suggested which should allow the model to fit
this behavior as well. The matrix walk model was based on a deterministic
algorithm acting on a link matrix representation of knowledge structure, and was
also able to match general statistical aspects of FTE temporal data; this model
naturally produced a decreasing term entry rate. The method chosen to fill the
link matrix — uncorrelated random values all drawn from the same uniform
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distribution — required an intuitively unsatisfactory choice of value for one of
the model parameters. This fact was interpreted as a positive result, because it
indicates that modeling can provide information about the structure a link
matrix must have to provide a realistic representation of knowledge structure.
Suggestions for more sophisticated link matrix structures were made.

It was found that FTE response terms which are “jumps” — relatively
unrelated to immediately prior response terms — are associated with
significantly longer thinking times than are non-jumps. This indicates that
thinking time can be used to reveal subjects’ conceptual associations, and
suggests that thinking time measurements can be used to construct efficient,
automated ConMap-style tools for measuring students’ knowledge structures.
General measures of subjects’ overall “jump rate” were found to correlate
significantly, if noisily, with course exam performance.

5.1.2. Hand Drawn Concept Map (HDCM) Task
Suggestive evidence was found that various quantitative summary measures

of students’ hand-drawn concept maps — number of nodes, number of links,
and ratio of links to nodes — might correlate with the students’ course exam
performance.

5.1.3. Term-Prompted Term Entry (TPTE) Task
The impact of course-related learning was detected in TPTE responses by

looking at the set of all response terms entered by the study population to a
particular prompt term, and the number of subjects entering each term: it was
found that when the same term was presented during different sessions, most of
the response terms appeared with approximately the same frequency, but a few
drastically changed frequencies. Subjects’ response lists also became slightly
more similar to one another as the course progressed, and dramatically so for a
few prompts.

When subjects’ response lists were given a score based on the response terms
present, according to domain experts’ judgments of the relevance and
importance of each response, it was found that the resulting scores correlate
significantly with course exam performance. This indicate that a TPTE-style task
has the potential to serve as a useful assessment of domain expertise.

The terms in subjects’ TPTE response lists were also found to overlap
strongly with their HDCM terms for the same prompt, especially with terms in
nodes directly connected to the prompt term’s node, indicating that a TPTE-
based equivalent of the time-consuming concept map assessment could be
developed.



155

5.1.4. Problem-Prompted Term Entry (PPTE) Task
The fraction of subjects who entered a PPTE response term which was

descriptive of the fundamental principle required to solve the prompt problem
was found to increase after a week of course lecturing, homework, and studying
on directly related topics, but to remain essentially the same without that
coverage. This shows that the PPTE task is sensitive to changes in student
knowledge resulting from course coverage.

5.2. Areas of Concern
Experience gained throughout the study has revealed some potential pitfalls

in the use of the ConMap tasks and analysis of resulting data, and has led to
some suggestions for more effective use of the tasks.

Much of the difficulty arises from the fact that the ConMap tasks allow
subjects to choose their own responses. Subjects must therefore be cautioned and
regularly reminded to keep their responses within the spirit of the task: avoiding,
for example, terms that wander too far from the designated domain area, long
terms that describe a relationship rather than a concept or “thing”, and TPSE
statements that contain two distinct propositions. It has become clear with
experience what specific kinds of errors subjects tend to make, so these can be
explicitly addressed in future studies.

Subjects’ choices of term spelling, tense, and phrasing tend to be
idiosyncratic and inconsistent, so any analysis methods that focus on the
meaning of entered responses rather than their timings alone must either involve
careful human judgments or sophisticated computer prescriptions for term
comparison. This is not a weakness of the task designs, but rather a necessary
consequence of the fundamental ConMap philosophy that subjects’ spontaneous
responses, not reactions to a set of comparisons, should be elicited.

5.3. Directions
Throughout this dissertation, several suggestions have been made about

specific ways in which follow-up studies could further various lines of analysis
and modeling. This section will propose a few major directions for follow-up
research.

The studies conducted were designed to gather a wide variety of data with
many different factors varied. More information on the consistency and
reproducibility of the data would be valuable. For example, if the same FTE task
is repeated to the same subject at different times, how similar are the timing
patterns? How similar is the list of response terms, in terms of both global
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position of the terms (which are near the beginning, which near the end, etc.) and
of local structure (do the same mini-sets show up each time)? How reproducible
are a subjects’ TPTE responses to a particular prompt, and how does this depend
on recent experience such as previous prompts? For these kinds of questions, the
thorny issue of subject memory must be confronted, since a subject’s memory of
tasks done will likely influence his or her behavior on subsequent tasks.

It is an open question how significantly the physical aspects of task
performance — specifically, term typing on a keyboard — affects the gathered
data. It seems likely that subjects with different typing abilities might be
influenced qualitatively differently: subjects’ self-observations expressed during
informal interviews suggest that some subjects can think ahead to their next term
while typing a term in, but others find typing to be so cognitively demanding
that after they complete entering a term they must think back to recall their train
of thought, or look at the screen to remind themselves of the prompt term.
Alternative implementations of the term-entry tasks, perhaps involving the
audio recording of spoken responses, should be illuminating. This could involve
significant technical challenges; for example, extracting sufficiently accurate and
precise time data on term starting times and “entering” times might require
computerized auditory analysis of the recorded signal.

The TPTE task has been shown to provide information similar to that of a
concept map, especially the portion of the map closest to the prompt or
“starting” term. This suggests that a computer program could use repeated TPTE
tasks to build up a concept map representation of a subject’s knowledge
structure, by using his or her responses to initial prompts as subsequent prompts
and keeping track of all the interconnections that are indicated. If the problem of
idiosyncratic spelling and phrasing choices can be solved, a useful “automatic
concept mapping tool” might be possible. As a further elaboration, TPTE results
might be used to guide the selection of term pairs for a TPJ task, reducing the
number of pairings presented and helping to solve the “N2 problem”.

Attempts to validate ConMap measures by comparison with exam scores are
of questionable value since in-course exam scores are a poor indicator of the
kinds of expert-like knowledge structuring being probed for: if exam scores were
reliable and properly sensitive, new assessment tools would be unnecessary.
Comparison of ConMap task performance with performance on carefully
designed, conceptually-focused problems should be much more effective at
revealing the sensitivity of ConMap measures. Studies specifically designed to
validate proposed ConMap measures of domain expertise are in order.

Studies which can provide data for further modeling are recommended.
Specifically, the variation of FTE term entry rate with elapsed task time has
shown itself to be important for the construction and testing of models. Having
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subjects repeat an FTE task multiple times, as suggested above, could be helpful
in this regard. Modeling of TPTE time data was not attempted yet because TPTE
data sets are short, and aggregating many together to get sufficient data points
for meaningful analysis is dangerous given the number of factors varying. TPTE
data with more repetition would be of benefit.

Finally, it would be interesting and valuable to investigate why subjects
associate pairs of terms: in other words, to investigate what happens, cognitively,
when one term brings to mind another. Comparing TPSE response statements
with TPTE response terms might be helpful, and so might other avenues of
information like focused interviews and perhaps some variant of talk-aloud
protocol.
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