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Springbok:
The Physics 
of Jumping

er used, the springbok will provide students with an
enjoyable learning experience.

We begin here with a quantitative analysis based
on a simple (Hooke’s law) model, follow that with a
conceptual analysis of jumping, and then give a sam-
pling of further ways to use a springbok.  For a more
detailed presentation, see Ref. 1.

Quantitative Analysis
An Elementary Model. The model we will use to ana-
lyze a springbok contains three simplifying assump-
tions: (1) the spring connecting the two masses obeys
Hooke’s law, (2) the mass of the spring is negligibly
small, and (3) all dissipative effects can be ignored, in-
cluding energy loss as the spring oscillates.  Even with
these assumptions, analyzing a springbok is compli-
cated because it consists of two masses that interact
with, and move relative to, one another.  Neverthe-
less, two tactics will permit a straightforward solution
within this model.  First, divide the motion of the
springbok into two distinct phases: phase 1 — while
the springbok is in contact with the table, and phase 
2 — after the springbok has left the table.  Then focus
the analysis on the center of mass of the springbok. 

Robert Dufresne

Asimple spring-loaded toy that jumps up off
the table when compressed and released of-
fers the physics teacher a rich context for ex-

ploring a wide range of physics concepts and princi-
ples, and it possesses a number of features that give it
broad instructional value.

In the following, we refer to this system (basically
two masses and a spring, illustrated in Fig. 1) as a
springbok, named for the South African gazelle that is
noted for its grace and delightful habit of suddenly
springing into the air.  A jumping springbok is easy to
make and engaging to study, amenable to both con-
ceptual and quantitative analyses at a variety of levels.

The springbok system raises intriguing questions:
Why does it jump?  Under what circumstances will it
leave the table?  Will a springbok jump to the same
height on the Moon as on Earth?  If the masses on the
two ends are unequal, for which orientation of the
masses will the springbok jump higher?  From intro-
ductory to graduate instructional situations, teachers
can choose to approach the physics of jumping either
empirically — by building a springbok and observing
its behavior — or theoretically — by creating a quan-
titative model and analyzing its implications.  Howev-
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The Equations of Motion. Free-body diagrams for the
two masses are shown in Fig. 2.  Applying Newton’s
second law leads to the following equations of motion
during phase 1:

mu y
..

u = – k(yu – yl – L) – mu g                           (1a)
and

ml y
..

l = k(yu – yl – L) – ml g + FN . (1b)

In these equations, mu is the upper mass, ml the lower
mass, k the spring constant, L the natural length of
the spring, g the gravitational field strength, and FN
the normal force exerted on the lower mass by the
table.  These two equations are written in terms of the
upper and lower-mass coordinates yu and yl.  This
form is most useful for analyzing phase 1 (i.e., while
the lower mass remains in contact with the table).

For phase 2, the equations of motion are the same
as for phase 1, except that the normal force on the

lower mass is zero.  The equations of motion are easier
to solve when written in terms of the total and re-
duced masses (M = mu + ml and � = muml /M ), and
the center-of-mass (c.m.) and relative coordinates 
[Y = (muyu + ml yl )/M and y = yu – yl ].  The resulting
equations are:

MY
..

= – Mg                                                     (2a)
and

�y
..

= – k(y – L).                                              (2b)

Solving the Equations of Motion. During phase 1, the
lower-mass coordinate is constant in time.  If we take
its position to be zero (yl = 0), Eq. (1b) becomes trivial
(i.e., y

..
l = 0).  Equation (1a) becomes identical to the

equation of motion for an object attached to a vertical
Hooke’s-law spring, and is easily solved for the upper-
mass coordinate (yu) as a function of time.  [Note that
once yu is determined, we can obtain the normal force
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Fig. 2. Free-body diagrams for upper mass, lower mass, and
springbok systems. Assumes springbok is in contact with table
and that its center of mass is accelerating upward.

Fig. 1.  (a) Diagram of springbok showing its com-
ponents. (b) A pole and base are used to maintain
stable vertical motion. (c) Holes are drilled through
the centers of the upper and lower masses so that
the springbok may be placed over the pole.
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as a function of time by substituting yu into Eq. (1b).]
The solution for phase 1 is presented in Fig. 3a.

During phase 2, the springbok is no longer in con-
tact with the table and the normal force is zero.
When this is the case, the equations of motion are un-
coupled if they are written in terms of the center-of-
mass and relative coordinates.  Equation (2a), which
describes the center-of-mass coordinate, is equivalent
to the equation of motion for an object experiencing a
constant gravitational force.  Equation (2b), which
describes the relative coordinate, is equivalent to the
equation of motion for an object attached to a
Hooke’s-law spring.  Both equations are straightfor-
ward to solve.  The solution for phase 2 is presented in

Fig. 3b.
Obtaining the general solution for each phase is

not particularly difficult.  However, finding the spe-
cific solution for a given set of initial conditions in-
volves a bit of algebra, which results from matching
the phase 1 and phase 2 general solutions at the in-
stant the lower mass leaves the table.  This occurs
when the spring is slightly stretched, and the spring
force pulling up on the lower mass is equal to its
weight (kyu = ml g), a condition that determines the
position of the upper mass.  The upper-mass position
can then be used to find the speed of the upper mass
(e.g., by using conservation of energy) and the time
that the lower mass leaves the table [e.g., by inverting
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Fig. 3. Solutions to equations of motion for (a) Phase 1: interval while springbok is in contact with table; and (b)
Phase 2: interval after springbok leaves table.  Time t� = 0 corresponds to time at which springbok leaves table. 

a. b.
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the solution to Eq. (1a)].  How the various constants
in the general solution are related to the initial condi-
tions is indicated in Fig. 3.  

A graphical representation of the solution for a par-
ticular set of parameters and initial conditions is pro-
vided in Fig. 4.  The model predicts that the center of
mass of the springbok will reach a larger maximum
height when the larger mass is on top.  It also predicts
that the springbok will stay in the air much longer
when the larger mass is on top.  Numerically, the re-
sults are that the center of mass reaches a maximum
height of about 46 cm at around 0.3 seconds after be-
ing released when the larger mass is on top, and it
reaches a maximum height of only about 6 cm at
around 0.12 seconds when the smaller mass is on top. 

The actual motion of a springbok is shown in Fig.
5.  Thirty frames per second were taken using a digital
camera, and a selection of them are shown.  When the
smaller mass is on top, the center of mass reaches a
maximum height of about 6.5 cm at around 0.1 sec-
onds after being released (i.e., about the fourth frame),
and when the larger mass is on top, the center of mass
reaches a maximum height of about 45 cm at around
0.3 seconds (i.e., the 11th frame).  These observed val-
ues match up very well with the predicted values.  The
solutions to the equations of motion and the actual
motion of a real springbok both show the same result:
When the upper mass is heavier than the lower mass,
the springbok is in the air longer, and its maximum
height is larger.

Two caveats should be mentioned.  First, in writ-
ing down the solution, we have assumed that the
springbok loses contact with the table (i.e., the nor-
mal force is zero at some time).  The springbok will
leave the table if the upper mass stretches the spring to
a point where the spring force on the lower mass is
equal to its weight.  This condition will be met only if
the spring is initially compressed beyond some mini-
mal amount determined by the size of the spring con-
stant, the values of the two masses, and the strength of
the gravitational field.  Second, the phase 2 solution
remains valid only while the position of the lower
mass is greater than zero.

Finding the Maximum Height Without Solving the
Equations of Motion. For those not interested in the
details of the motion, but only in the maximum
height of the center of mass, a solution can be found
without solving the equations of motion.  In other

words, an algebraic expression for the maximum height
is possible without solving any differential equations.  

Initially, the spring is compressed a distance D.
The lower mass maintains contact with the table until
the spring force on the lower mass balances its weight,
which occurs when the spring is stretched a distance d
from its relaxed state: 

d = �
m
k
l g� .                                                             (3)

Fig. 4.  Plots of upper mass, center of mass, and lower
mass height vs time for two orientations of springbok:
larger mass on top and smaller mass on top.  Parameters
correspond to the springbok shown in Fig. 5.

Fig. 5.  Frames from digital video showing motion of a
springbok for two orientations: larger mass on top and
smaller mass on top.
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the smaller mass on top — produces the greater
change in the height of the springbok’s center of mass.
For a sufficiently stiff spring (i.e., kD >> Mg), the
springbok will leave the table after stretching a small
distance d << D.  In this limit, the change in height of
the center of mass is proportional to the upper mass,
and therefore is greater when the larger mass is on top.

Conceptual Analysis
Teachers might want to address some of the fol-

lowing conceptual issues before having their students
attempt a formal solution such as presented in the
Quantitative Analysis section.

Force and Acceleration. Initially, the springbok’s cen-
ter of mass accelerates upward, away from the table.
According to Newton’s laws, this is possible only if
there is an upward, net external force exerted on the
springbok.  The only external force that points in the
upward direction is the normal force.  To realize a net
upward force, the normal force must exceed the
weight of the springbok.  Some students may believe
that the normal force is always greater than the weight
of the springbok while it is in contact with the table,
when in fact it ranges from being larger than the
weight (when the spring is maximally compressed) to
being equal to zero (when the springbok loses contact
with the table).  Other students may think that the
normal force is always equal to the springbok’s weight. 

Students may have difficulty identifying the force
that causes the springbok to jump off the table.  For
example, some may think that the spring provides the
net upward force on the springbok.  Drawing and an-
alyzing free-body diagrams for different systems (e.g.,
the upper mass, lower mass, and springbok) and dif-
ferent times (e.g., the point of release, the moment
the springbok leaves the table, and while the spring-
bok is in the air) should help students clarify some of
these points.

Work and Kinetic Energy. Initially the springbok is at
rest, but by the time it leaves the table it has acquired
kinetic energy.  The work-kinetic energy theorem im-
plies that a positive amount of work is done on the
springbok during phase 1.  Students may have diffi-
culty identifying the force that does the positive work
on the springbok.  In the table’s frame of reference,
the normal force exerted by the table does no work on
the springbok.  This is because the table and the lower

During phase 1, the upper mass moves up a total dis-
tance D + d, producing a change in height of the cen-
ter of mass:2

�hcm(Phase 1) = �
mu

m

+
u

ml
� (D + d ) .            (4)

Once the springbok loses contact with the table, the
only external force on the toy is the gravitational force
exerted by Earth, and so, the acceleration of the toy’s
center of mass is constant and equal to g.  For con-
stant acceleration, the maximum change in height of
the center of mass is easily related to the velocity of
the center of mass (V0) at the moment the springbok
loses contact with the table:

�hcm(Phase 2) = �
V

2g

2
0

� . (5)

At this instant, only the upper mass is moving.  In
terms of the upper-mass velocity (v0), the center of
mass velocity is

V0 = �
mu

m

+
u

ml
� v0 . (6) 

If dissipative effects can be ignored, the velocity of the
upper mass (at the moment the toy loses contact with
the table) can be found using conservation of energy.
There are three contributions to the energy: (1) elastic
potential energy in the stretched spring, (2) gravita-
tional potential energy in the Earth-upper mass sys-
tem, and (3) kinetic energy due to the motion of the
upper mass:

½kD2 = ½kd 2 + mu g(D + d ) + ½muv0
2 .         (7)   

By working backward, Eqs. (5), (6), and (7) can be
used to find the maximum change in height of the
springbok’s center of mass for phase 2.  This result can
be added to the change in height for phase 1 [Eq. (4)]
to obtain a single expression — in terms of d, D, mu,
ml , and k — for the maximum change in height of
the center of mass for phases 1 and 2 combined.

�hcm(Phase 1 + Phase 2)

= ��mu

m

+
u

ml
���1 + �

2 

��(m
½

u

k
+
D
m

2

l)g
�� (8)

With this result students can investigate the question
about which orientation — the larger mass on top or

d
�
D
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mass remain fixed during phase 1.  The gravitational
force does negative work on the upper mass as it
moves upward.  So, which force does positive work? 

A springbok is a simple example of a system for
which the internal forces do net work on the system.
Specifically, the spring does net positive work on the
springbok as it relaxes from its initially compressed
state.  Interestingly, although the spring does net
work, it does not contribute to the net force on the
springbok.  The opposite is true for the table, which
does exert a net upward force on the springbok, but
does no work.

Conservation of Energy. Students sometimes have a
limited concept of conservation of energy based on
their study of particle mechanics.  For a single block
launched from a spring, for example, the maximum
height of the block is determined by the mass of the
block and the distance the spring is initially com-
pressed.  This follows easily from conservation of en-
ergy, which requires that the elastic potential energy,
initially stored in the spring, be equal to the increase
in gravitational potential energy as the block rises to
its maximum height.  Students might reason in an
analogous way about springbok and conclude that the
orientation of the springbok does not matter — after
all, neither the amount of initial elastic potential ener-
gy nor the total mass of the springbok depend upon
which mass is on top.  Some students will be unaware
that the springbok has kinetic energy at the point
where the center of mass is at its maximum height.
But even those who are aware may incorrectly believe
that the potential energy initially stored in the spring
is equal to the gain in gravitational potential energy.

What students might not realize is that for a 
multiparticle system such as this one, the energy in
the system gets divided among different degrees of
freedom in a way that depends upon the details of the
motion.  For a springbok, the initial elastic potential
energy is transformed into gravitational potential en-
ergy, kinetic energy associated with the motion of the
center of mass, and kinetic energy associated with the
motion of the masses relative to the center of mass.
At the maximum height, the kinetic energy associated
with the motion of the center of mass is zero, but the
kinetic energy associated with the motion of the two
masses relative to the center of mass is not.  Further, at
the maximum height there will usually remain some
elastic potential energy — the spring will not be at its
natural length.  In deciding how to make the spring-
bok jump the highest, one is effectively determining
how to maximize the transfer of the initial elastic po-
tential energy into translational kinetic energy of the
center of mass.

Impulse and Momentum. Initially, the total momen-
tum of the springbok is zero, but by the time it leaves
the table it has a momentum that points up.  This
change in the total momentum of the system indi-
cates that a net impulse is delivered to the springbok
during phase 1.  The normal force exerted by the table
provides an upward impulse.  The gravitational force
due to Earth provides a downward impulse.  The
spring provides no net impulse, since it delivers an
upward impulse to the upper mass and an equally
large downward impulse to the lower mass.  Of the
normal force and the gravitational force, it is the nor-
mal force that provides the larger impulse.  Students

Fig. 6.  Two carts connected to a compressed spring and
launched from a wall — the horizontal “equivalent” of
the springbok system.

Fig. 7.  Normal force vs time exerted by the wall on the
two-cart system (Fig. 6) for two different orientations.
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should wrestle with the fact that the spring does net
work on the springbok, providing the springbok with
its kinetic energy, but does not deliver the net impulse
required to produce the springbok’s upward momen-
tum.  Equally, students should appreciate that the
normal force delivers a net impulse but does no work.

Using Pop-up Toys in the Classroom
We began our presentation with a quantitative

analysis of a springbok.  However, students can easily
get lost in the details and learn very little about the
underlying physics.  To promote deeper learning, use
a variety of approaches with your students.

You might want to start by asking students to pre-
dict which orientation of the springbok will lead to
the highest jump, leaving open the possibility that the
height of the jump is independent of the orientation.
Discuss their reasoning and use some leading ques-
tions.  For example, ask them to identify the objects
that exert forces on the springbok and to describe the
nature of these forces.  Follow up by having them
draw free-body diagrams.  Ask them also to describe
the energy in the springbok system, paying particular
attention to how the energy gets redistributed as the
system evolves in time.  After the discussion, take a
poll and then do a demonstration.  Show connections
with other “jumping” systems.

Working by analogy and determining the behavior
of a system under a limited set of conditions is the
stuff of working physicists.  So, rather than focusing
exclusively on the springbok, have students consider
analogies.  They could start by examining the design
features of natural jumpers.  How is the mass distrib-
uted among animals that jump?  Can these systems
jump effectively if turned upside down?  

Another analogy is shown in Fig. 6, where two
carts are launched from a wall using a compressed
spring connecting them.  When the heavier cart is
away from the wall, the normal force is exerted over a
longer time interval, making the impulse delivered to
the system larger (see Fig. 7), which means that the
center-of-mass velocity of the system is larger as well.

Student feeling of “cognitive overload” opens an
opportunity to teach about the problem-solving
process.  Have your students simplify the problem until
they obtain a version they can solve.  Use motion dia-
grams and graphs.  Having students sketch position
versus time for different coordinates (e.g., the upper
mass, lower mass, and center-of-mass coordinates)

provides an excellent starting place for class-wide dis-
cussion.  It also yields valuable information about stu-
dents’ conceptions of the motion.  Or let them solve a
series of related problems of increasing difficulty —
(1) a cart connected to a spring launched from a wall,
(2) a mass connected to a vertical spring launched
from a table, (3) two carts connected to a spring
launched from a wall, (4) a springbok, in the limit of
a stiff spring, launched from a table.

Another good exercise is for students to consider
possible limiting cases.  An informative limit for the
two-cart system is one in which one of the masses
tends toward zero.  In this limit, if the massive cart
(see Fig. 6) is away from the wall, all of the elastic 
potential energy initially stored in the spring is trans-
ferred into kinetic energy associated with the transla-
tion of the center of mass.  This leads to the maxi-
mum possible velocity for the center of mass.  If the
massive cart is against the wall, there is no way to
transfer the elastic potential energy, which is stored in
the (massless) spring, to the cart.  The velocity of the
center of mass will remain zero.  For this limiting case,
similar arguments can be made about the center-of-
mass velocity of the springbok at the moment it loses
contact with the table.

For a hands-on project, have students record the
motion of a springbok with a video or digital camera.
Save the recorded action to computer so students can
analyze the positions of the individual masses and of
the center of mass as functions of time.  Students can
use these data to check the model predictions (exam-
ple at Ref. 1).  Advanced students can explore more
sophisticated models that take into account the mass
of the spring and dissipative forces.

The great thing about a springbok is that different
sets of concepts and activities can be used at different
levels, and once the “pop-up” system is understood,
students will be able to apply the lessons learned to
real-life situations of bouncing balls, pogo sticks, or
jumping animals.
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