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SUBJECTIVE RANDOMNESS

The study of subjective randomness 1s of
interest to psychologists exploring people’s
judgment of regularities in everyday and scien-
tific contexts. Despite profound difficulties 1n-
volved in defining randomness™ (Hacking [19],
Lopes [31], Ford [14], Kac [21], Ayton et al.
[3], Gardner [16], Sheynin [36], Zabell [46]),
psychologists have studied subjective random-
ness extensively since the 1950s, mainly using
sequences as stimuli. People’s responses have
been evaluated by comparing them with the
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sampling distributions of major statistics de-
rived from the sequences.

Early generalizations concerning conceptions
of randomness were based on “probability-
learning” experiments in which subjects
predicted successive elements of random
sequences, receiving trial-by-trial feedback.
The conclusion was that humans are incapable
of perceiving randomness. Convinced there was
some pattern in the stimuli, most subjects be-
lieved the oncoming event depended on preced-
ing ones (Lee [29]). They predicted sequences
that deviated systematically from randomness.
However, evidence concerning people’s notion
of randomness in these experiments is indirect.
The produced sequences, which are influenced
by various feedback contingencies, may largely
reflect subjects’ hypotheses concerning the goal
of the experiment and their problem-solving
strategies.

TWO TYPES OF SUBJECTIVE-
RANDOMNESS EXPERIMENTS

In the first, and larger, class of subjective
randomness studies, subjects generate random
sequences under standard instructions to simu-
late a series of outcomes of a typical random
process such as tossing a coin. These exper-
iments (reviewed in Tune [38] and Wagenaar
[41]) vary in procedure and instructions, In
number of symbol types (possible outcomes)
and sequence length. The second class of stud-
ies investigates people’s spontaneous judgment,
or perception, of randomness. Subjects rate the
degree of randomness of stimuli or select the
most random of several sequences (Wagenaar
[40], Falk [10], Lopes and Oden [32]). Both
classes of subjective-randomness research are
reviewed in Bar-Hillel and Wagenaar [5]. The
perception experiments reflect subjective con-

cepts of randomness more directly, since people
might find it difficult to express in generation

what they can recognize in perception.

EXPERIMENTAL FINDINGS

The most systematic bias in subjective random-
ness is the notorious gambler’s fallacy. People
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act as if they believe that in flipping a coin,
as a run of heads grows longer, the probability
of tails on next trial increases. Thus human-
generated sequences are characterized by neg-
ative recency, a tendency to overalternate, and
hence too many short runs*. In perception, peo-
ple identify sequences with an excess of alter-
nations as most random, while “truly” random
sequences (those containing the modal number
of runs) are judged as less random because the
runs appear too long to occur by chance [5, 6,
9, 10, 12, 32, 40, 41].

The sequences mostly used in generation-
and perception-of-randomness tasks were
binary, and in judgment tasks the two sym-
bol types were generally of equal frequency.
Table 1 presents, for a variety of studies em-
ploying binary sequences, the probability of
alternation Pr(A) (a) generated under standard
instructions, and (b) perceived as most ran-

dom among sequences with a range of Pr(A)’s.
When the number of runs (r) 1n a sequence
of n symbols was reported in the study, we
computed Pr(A) as the ratio (r — 1)/(n — 1).
As can be seen in Table 1, Pr(A) of about
.6 recurs across many studies and experimen-
tal variations. The expectation of the sampling
distribution of Pr(A) 1s % or negligibly greater
than % in the constrained case of two symbol
types of equal frequencies. The longer the con-
strained sequence, the closer to % 18 E[Pr(A)]
and the more extreme the percentile of the pre-
ferred subjective Pr(A) of .6 (see Johnson and
Kotz [20] for the sampling distribution and mo-
ments of the number of runs, which is linearly

related to Pr(A)).

Subjects’ responses in tasks involving two-
dimensional binary grids show a similar bias.
Pr(A) of a grid i1s computed by dividing the
number of color changes along rows and

Table 1 Mean Probability of Alternation [Pr(A)] Generated or
Perceived as Most Random in Different Studies®

Size of set Pr(A)

Reference Randomness task
(a) Generation
Bakan [4] Sequence 300 59
Falk® [9° Sequence (constrained) (20 of each type) 61
Falk® [9 Two-dim. gnd (constrained) 10 X 10 (50 of each type) .63
Wiegersma [44] Sequence 120 S6°
Budescu® [6, Tables 2, 3] Sequence 20-40 59
60 S8
Rapoport and Budescu [35] Sequence 150 59
Kareev® [23] Sequence 10 61
Budescu and Rapoport Sequence 150 S8

[7, Exhibit 6]

(b) Perception

Select most random
Rate sequences
Rate two-dim. grids
Select most random
Rate sequences

Wagenaar [40]

Falk® [9]

Falk® [9]

Wiegersma [43]

Diener and Thompson [8]

Gilovich et al. [18] Classify as "chance,"

"streak,” "alternate”

Wiegersma [45, Expts.1-3] Select most random

Not reported 6
21 6
10 X 10 6
Not reported .65
20 S8
21 -8
63; .64; 5T

40

"The expected and most probable Pr(A) in random productions is .5. Differences in decimal accuracy partly

reflect reported differences in the original works.
®Averaged over different age and sophistication levels.
‘As read from Fig.1 in Wiegersma [44, 45].

dTwo different estimates based on the same data (of subjects exhibiting negative recency).



| ]

columns by the total number of possible
changes. For 10 X 10 grids with 50 cells of
each kind, as used by Falk [9], E[Pr(A)] 1s .51.
Such a grid, however, was not perceived as
maximally random by Falk’s subjects. Grids
judged as most random had Pr(A)’s of about
6 (Fig. 1).

The grids in Fig. 1 appear in the same
order as their mean rated randomness and 1llus-
trate the negative skewness of perceived ran-
domness as a function of Pr(A) (Falk [9, 10])).
In contrast, the random variable Pr(A) 1s ap-
proximately normally distributed around .5. The
peak of perceived randomness (.6) exceeds the
99th percentile in the sampling distribution of
10 X 10 grids with 50 cells of each kind (the
distributions and moments of random variables
such as the number of color changes in grids
were worked out by Moran [33], Krishna Iyer
[26, 27], and others).

Binary sequences whose Pr(A)’s vary from
1, .2, .3, through to 1.0 were presented to
subjects for judgment of randomness in three
studies (Falk [9] and Falk and Konold [12,
Experiments 1 and 3]). The sequence length
was 21 in the first two studies and 41 in the
third. Despite procedural differences, remark-
ably similar outcomes were obtained. These
results were pooled to obtain mean subjec-
tive randomness as a function of Pr(A). In
each study, subjects’ randomness ratings were
averaged for each Pr(A), and the 10 means
were standardized. The weighted average of
the three standardized means was then com-
puted for every Pr(A). The subjective random-
ness (SR) function was obtained by linearly

(a)
Rated Ieast random

"
E O -|..
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transforming these 10 averages to range from
0 to 1, to allow comparison with information
theory’s second-order entropy (EN), a measure
of a sequence’s objective degree of randomness
(Attneave [2, Chaps. 1, 2]). As can be seen In
Fig. 2, EN 1s symmetric around .5, whereas SR
1s negatively skewed as a function of Pr(A).

EXAMPLES OF BIASED PERCEPTION

In the World War II rocket attack on London,
people believed that the hits tended to clus-
ter in specific zones. However, the distribution
of hits per section showed a remarkably good

correspondence to the expected (Poisson) dis-
tribution under the assumption of randomness

(Feller [13, pp. 160—-161]). Similarly, Gilovich
et al. [18] describe a pervasive belief in the
effect of a “hot hand” in basketball. Players,
coaches, and fans all believe that when a player
makes a basket, the conditional probability of
making the next shot is greater than it is after
a miss. However, the authors analyzed massive
records of real games and showed that the hand
of a basketball player 1s not any hotter than
that of a coin flipper. Actual sequences of hits
and misses were largely compatible with the ex-
pected output of a Bernoulli process, regardless
of the player’s overall hit rate.

In a casino setting, where sequences of wins
and losses are characterized by sequential in-
dependence, gamblers attributed outcomes to a
factor they called luck, which operates indepen-
dently of chance [42]. Good (bad) luck pro-
duces longer streaks of wins (losses) than those

(c)
Rated most random

.‘\-

Probability of Alternation

Figure 1 Three grids presented for randomness judgment by Falk [9], ordered according to their
probability of alternation and mean perceived randomness (N = 341).
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Figure 2 Second-order entropy, EN, and linearly transformed means of subjective randomness, SR
(N = 491), and of difficulty of encoding, DE (N = 160), as functions of the sequence’s probability of
alternation (based on pooled results of Falk [9] and Falk and Konold [12]).

expected by chance. When luck is at work, the
conditional probability of winning given a pre-
vious win 1s greater than it is given a previous
loss. The analogy between the lay concepts of
hot hand and luck is evident.

In all these cases, people are impressed by
clusters that appear too large to be random.
However, instead of adjusting their ideas about
chance, they invent an idle “theory” to account
for the apparent deviations from randomness.
They mistakenly reject chance and thus com-
mit a “Type I error.” The other way of going
wrong, “Type II error,” occurs when one over-
looks some structure in the stimuli. This is what
happened in the many generation and percep-
tion studies when subjects viewed overalternat-
Ing sequences as most random.

Researchers are not immune to these falla-
cies. Alberoni [1] presented a (supposedly ran-
dom) sequence of 24 blue and 25 red beads to
subjects who unanimously perceived it as ran-
dom. However, the sequence contained 40 runs,
which translates to Pr(A) of .81. This places
the sequence above the 99.9th percentile in the
sampling distribution of number of runs for se-
quences of this type. Apparently, Alberoni se-
lected that sequence as a “good example” of a
random sequence, and thus committed a Type II

CITOI.

ACCOUNTING FOR THE BIASES
Functional Factors or Concept?

A class of explanations attributes suboptimal-
ity in randomization to factors such as motor
tendencies, boredom, and limitations of at-
tention and short-term memory (reviewed by
Tune [38], Wagenaar [41], and Bar-Hillel and
Wagenaar [5]). However, the similarity of
people’s responses across generation and per-
ception tasks and in the face of experimental
variations argues against such functional limita-
tions and suggests an underlying biased concept
of randomness [40, 9]. This view is further sup-
ported by findings of individual consistency in
people’s performance of diverse tasks involv-
ing randomness [9, 6].

Local Representativeness

According to Kahneman and Tversky [22], sub-
jects regard a sequence as random if it is /o-
cally representative of the salient features of 1ts
parent population and the process by which it
was generated. Thus, a sequence of coin t0SS€S
should include about the same number of heads
and tails in its entirety and in its various subse-
quences. At the same time, the sequence should



display some 1rregularity. A sequence that sat-
isfies local representativeness contains exagger-
ated alternations. People seem to regard chance
as a self-correcting mechanism, which takes
care to restore the balance whenever it is dis-
rupted, as 1f they believe in “the law of small
numbers” [39].

Although compelling as an account of
subjects’ responses, explaining subjective ran-
domness by claiming that people expect ir-
regularity 1s somewhat circular. Indeed, local
representativeness succeeds in predicting ex-
cessive alternations, but it fails to predict the
extent of this bias. It specifies neither how
local our span of consideration is, nor how rep-
resentative the local segments should be. (See
Kubovy and Gilden [28] and Kareev [23] for
promising attempts to delineate subjects’ span
of localness and the type of representativeness
they try to attain in generation.)

Apparent Randomness as
Subjective Complexity

Konold and Falk [25] and Falk and Konold
[11, 12] examined the hypothesis that people
judge the randomness of a sequence by assess-
ing 1ts complexity of structure. Subjects pre-
sumably attempt to make sense of the sequence,
for example, by encoding it. The harder this
task, the more random the sequence is perceived
as. This hypothesis was inspired by Kahneman
and Tversky [22], who suggested that apparent
randomness 1s a form of complexity and the
most random-appearing sequence would be the
one whose description is longest. The i1dea ac-
cords with complexity theory’s approach, which
identifies randomness with incompressibility.
In principle, the complexity of a sequence
(also known as Kolmogorov complexity or
algorithmic information content) is the length
of the shortest computer program that can
reproduce the sequence. A technical outline of
algorithmic information theory’s* approach to
randomness (including references to the
founders of the theory in the 1960s) is given
by Gacs [15]. A random sequence cannot be
condensed and thus has maximal complexity
|14, 30, 17]. This definition of randomness
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1s 1ntuitively appealing, since strings that are
incompressible must be patternless. A pattern
could have been used to reduce the description
length.

Subjective complexity has been studied by
psychologists independently of the study of
subjective randomness. Simon’s review of theo-
ries and behavioral tasks [37] indicates that dif-
ferent measures of sequences’ subjective com-
plexity—such as number of errors in recall,
length of description, and rated “goodness” of
pattern—correlate highly with each other and
are essentially interchangeable.

Falk and Konold [12] obtained, in a between-
subjects design, randomness ratings and
several measures of difficulty of encoding
(subjective complexity) for the same sets of se-
quences. Pr(A) varied from .1 to 1.0 in .1 inter-
vals 1n each set. SR values (as explained above)
are plotted against Pr(A) in Fig. 2, alongside
a composite measure of the difficulty of en-
coding (DE) and EN of these sequences. DE
Incorporates two encoding tasks: memorizing
the sequence 1n as short a time as possible, and
copying 1t while minimizing both viewing time
and number of viewings. For every Pr(A), the
standardized mean measures of difficulty in the
two tasks were averaged. The 10 DE values
were obtained by linearly transforming these
averages to [0, 1].

As can be seen in Fig. 2, DE behaves much
like SR. Both variables are negatively skewed
as functions of Pr(A), and the highest two points
of the two functions are at .6 and .7. Sub-

jective randomness is better predicted by the

sequence’s encoding difficulty than by its ob-
jective randomness. SR’s correlation coefficient
with DE 1s .95, whereas with EN it is only .62.

The negative skewness of DE as a function
of Pr(A) and its resemblance to SR are some-
what surprising. Overalternating sequences con-
tain some cues which theoretically could be
used to encode them more easily than sequences
of Pr(A) = .5. Likewise, sequences of Pr(A) =
S * d, whose complexity and entropy are the
same, should in theory be equally easy to en-
code. It 1s therefore instructive that one type
of dependency (overrepetitions) is largely uti-
lized, whereas the same degree of dependency
of the other type (overalternations) is appar-
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ently not detected and seems even to impair
performance. (Kareev [24] considers this asym-
metry in judgment a rational predisposition for
early detection of potentially more informative
relationships.)

The similarity of DE and SR supports the
hypothesis that tacit encoding mediates the
judgment of how random a sequence is. On
this account randomness is perceived when
encoding fails. That subjective randomness
results from people’s failure to make sense of
their observations is not a new idea. Piaget
and Inhelder [34] attribute the origin of the
idea of chance in children to their realizing
the 1mpossibility of predicting oncoming
events or finding causal explanations. The
experience of randomness is thus construed
as an admission of failure of our intellectual
operations.

End of "Subjective Randomness"



